ADVANCED FLUID MECHANICS

Homework 1: Mathematical Preliminaries and Governing Equations

1. Proof of Vector Identities
(a) $\nabla \cdot(\nabla \times \vec{F})=0$

Solution :

$$
\begin{aligned}
\nabla \cdot(\nabla \times \vec{F}) & =(\nabla \times \vec{F})_{i, i} \\
& =\left(\epsilon_{i j k} F_{k, j}\right)_{, i} \\
& =\epsilon_{i j k} F_{k, j i} \\
& =0
\end{aligned}
$$

(b) $\nabla \times(\nabla \times \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$

Solution :

$$
\begin{aligned}
{[\nabla \times(\nabla \times \vec{F})]_{i} } & =\epsilon_{i j k}(\nabla \times \vec{F})_{k, j} \\
& =\epsilon_{i j k}\left(\epsilon_{k p q} F_{q, p}\right)_{j} \\
& =\epsilon_{i j k} \epsilon_{k p q} F_{q, p j} \\
& =\left(\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}\right) F_{q, p j} \\
& =F_{j, i j}-F_{i, j j} \\
& =\left(F_{j, j}\right)_{, i}-\left(F_{i}\right)_{, j j} \\
& =\left[\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}\right]_{i}
\end{aligned}
$$

Hence, proved.
(c) $\nabla \cdot(\vec{F} \times \vec{G})=\vec{G} \cdot(\nabla \times \vec{F})-\vec{F} \cdot(\nabla \times \vec{G})$

Solution :

$$
\begin{aligned}
\nabla \cdot(\vec{F} \times \vec{G}) & =(\vec{F} \times \vec{G})_{i, i} \\
& =\left(\epsilon_{i j k} F_{j} G_{k}\right)_{, i} \\
& =\epsilon_{i j k} F_{j, i} G_{k}+\epsilon_{i j k} G_{k, i} F_{j} \\
& =\epsilon_{i j k} F_{j, i} G_{k}-\epsilon_{i k j} G_{k, i} F_{j} \\
& =(\nabla \times \vec{F})_{k}(\vec{G})_{k}-(\nabla \times \vec{G})_{j}(\vec{F})_{j} \\
& =(\nabla \times \vec{F}) \cdot \vec{G}-(\nabla \times \vec{G}) \cdot \vec{F}
\end{aligned}
$$

2. $2^{\text {nd }}$ Law of Thermodynamics for Newtonian Fluids

The Gibbs equation, obtained by combining the first and second laws of thermodynamics, is :

$$
T d s=d e+p d v
$$

Gibbs equation can be written for a moving fluid as :

$$
T \frac{D s}{D t}=\frac{D e}{D t}+p \frac{D v}{D t}=\frac{D e}{D t}-\frac{p}{\rho^{2}} \frac{D \rho}{D t}
$$

Now, the rate of change of energy, $D e / D t$, can be expressed in terms of viscous dissipation and heat flux using the following equation.

$$
\rho \frac{D e}{D t}=-p \nabla \cdot \vec{v}-\nabla \cdot \vec{q}+\Phi
$$

where, $\Phi=\lambda(\nabla \cdot \vec{v})^{2}+2 \mu \nabla^{S} \vec{v}: \nabla \vec{v}$
Eliminating $D e / D t$ using the above two equations, we have

$$
\begin{aligned}
& T \frac{D s}{D t}=\frac{1}{\rho}(-p \nabla \cdot \vec{v}-\nabla \cdot \vec{q}+\Phi)-\frac{p}{\rho^{2}} \frac{D \rho}{D t} \\
\Longrightarrow & \rho T \frac{D s}{D t}=-\frac{p}{\rho}\left(\nabla \cdot \vec{v}+\frac{D \rho}{D t}\right)-\nabla \cdot \vec{q}+\Phi
\end{aligned}
$$

Using the mass conservation equation, the expression within paranthesis is 0 . Hence,the equation reduces to,

$$
\Longrightarrow \rho \frac{D s}{D t}=-\frac{\nabla \cdot \vec{q}}{T}+\frac{\Phi}{T}
$$

Using the vector identity, $\nabla \cdot\left(\frac{\vec{q}}{T}\right)=\frac{\nabla \cdot \vec{q}}{T}-\frac{\vec{q}}{T^{2}} \cdot \nabla T$

$$
\Longrightarrow \rho \frac{D s}{D t}=-\nabla \cdot\left(\frac{\vec{q}}{T}\right)-\frac{\vec{q}}{T^{2}} \cdot \nabla T+\frac{\Phi}{T}
$$

Using the constitutive equation for heat flux, $\vec{q}=-k \nabla T$, we get

$$
\begin{aligned}
& \Longrightarrow \rho \frac{D s}{D t}=-\nabla \cdot\left(\frac{\vec{q}}{T}\right)+k \nabla T \cdot \nabla T\left(\frac{1}{T}\right)^{2}+\frac{\Phi}{T} \\
& \Longrightarrow \rho \frac{D s}{D t}=-\nabla \cdot\left(\frac{\vec{q}}{T}\right)+k\left(\frac{\|\nabla T\|}{T}\right)^{2}+\frac{\Phi}{T}
\end{aligned}
$$

For a positive k , the second term of the RHS is positive, which is always (otherwise heat would flow up the temperature gradients and that would be a violation of the 2nd law of thermodynamics). The third term of RHS can be proven to be positive as follows:

$$
\begin{aligned}
\Phi & =\lambda(\nabla \cdot \vec{v})^{2}+2 \mu \nabla^{S} \vec{v}: \nabla \vec{v} \\
& =\lambda(\nabla \cdot \vec{v})^{2}+2 \mu \nabla^{S} \vec{v}:\left[\frac{\nabla^{S} \vec{v}+\left(\nabla^{A} \vec{v}\right)}{2}\right] \\
& =\lambda(\nabla \cdot \vec{v})^{2}+2 \mu \nabla^{S} \vec{v}: \nabla^{S} \vec{v} \\
& =\left(K-\frac{2}{3} \mu\right)(\nabla \cdot \vec{v})^{2}+2 \mu \nabla^{S} \vec{v}: \nabla^{S} \vec{v} \\
& =\left(K-\frac{2}{3} \mu\right)\left(\sum_{i} \frac{d v_{i}}{d x_{i}}\right)^{2}+2 \mu\left[\sum_{i}\left(\frac{d v_{i}}{d x_{i}}\right)^{2}+\sum_{i, j}^{i \neq j}\left(\frac{d v_{i}}{d x_{j}}+\frac{d v_{j}}{d x_{i}}\right)^{2}\right]
\end{aligned}
$$

rearranging the terms

$$
=\underbrace{K\left(\sum_{i} \frac{d v_{i}}{d x_{i}}\right)^{2}+2 \mu\left[\sum_{i, j}^{i \neq j}\left(\frac{d v_{i}}{d x_{j}}+\frac{d v_{j}}{d x_{i}}\right)^{2}\right]}_{A}+\underbrace{2 \mu\left[\sum_{i}\left(\frac{d v_{i}}{d x_{i}}\right)^{2}\right]-\frac{2}{3} \mu\left(\sum_{i} \frac{d v_{i}}{d x_{i}}\right)^{2}}_{B}
$$

Consider the parts A and B of the above expression seperately. A is always positive for $K>0$ and $\mu>0$. Reducing B further:

$$
\begin{aligned}
B & =2 \mu\left[\sum_{i}\left(\frac{d v_{i}}{d x_{i}}\right)^{2}\right]-\frac{2}{3} \mu\left(\sum_{i} \frac{d v_{i}}{d x_{i}}\right)^{2} \\
\Longrightarrow \frac{B}{2 \mu} & =\sum_{i}\left(\frac{d v_{i}}{d x_{i}}\right)^{2}-\frac{1}{3}\left(\sum_{i} \frac{d v_{i}}{d x_{i}}\right)^{2} \\
& =\frac{2}{3} \sum_{i}\left(\frac{d v_{i}}{d x_{i}}\right)^{2}-\frac{1}{3}\left(\sum_{i, j}^{i \neq j} \frac{d v_{i}}{d x_{i}} \frac{d v_{j}}{d x_{j}}\right) \\
& =\frac{2}{3} \sum_{i}\left(\frac{d v_{i}}{d x_{i}}\right)^{2}-\frac{1}{3}\left(\sum_{i, j}^{i \neq j} \frac{d v_{i}}{d x_{i}} \frac{d v_{j}}{d x_{j}}\right)
\end{aligned}
$$

Using $2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$

$$
=(a-b)^{2}+(b-c)^{2}+(c-a)^{2}
$$

$$
=\frac{1}{3} \sum_{i, j}^{i \neq j}\left(\frac{d v_{i}}{d x_{i}}-\frac{d v_{j}}{d x_{j}}\right)^{2} \geq 0
$$

Since, both expressions A and B are proven to be positive, it is safe to say $\Phi \geq 0$
Hence, the thermodynamic equation reduces to the following inequation :

$$
\begin{gathered}
\Longrightarrow \rho \frac{D s}{D t} \geq-\nabla \cdot\left(\frac{\vec{q}}{T}\right) \\
\Longrightarrow \int_{V_{t}} \rho \frac{D s}{D t} d V
\end{gathered}
$$

Using the Gausss divergence theorem on the RHS of the inequation, we get

$$
\Longrightarrow \int_{V_{t}} \rho \frac{D s}{D t} d V \geq-\int_{S_{t}} \frac{\vec{q} \cdot \hat{n}}{T} d S
$$

Using Reynold's Lemma,

$$
\Longrightarrow \frac{D}{D t} \int_{V_{t}} \rho s d V \geq-\int_{S_{t}} \frac{\vec{q} \cdot \hat{n}}{T} d S
$$

Hence, proved.

