ADVANCED FLUID MECHANICS
 Master of Science in Computational Mechanics/Numerical Methods Fall Semester 2018

Homework 1: Dimensional Analysis, Governing Equations and Bernoulli Equation Due date: November 14, 2018

Groups of two

1. A solid sphere of radius a and density ρ_{s} is dropped into a container of liquid whose density and viscosity are ρ_{l} and μ_{l}. A short time after entering the liquid, the sphere us observed to descend into the liquid at a constant speed V_{f}. Derive a dimensionless expression for the dependence of V_{f} on the experimental variables a, ρ_{s}, ρ_{l} and μ_{l} and the gravity g.
2. The integral form of the second law of thermodynamics reads

$$
\begin{equation*}
\frac{D}{D t} \int_{V_{t}} \rho s d V \geq-\int_{S_{t}} \frac{\boldsymbol{q} \cdot \boldsymbol{n}}{T} d S \tag{1}
\end{equation*}
$$

where s is the entropy per unit mass.
The goal of this exercise is to show that the above inequality always holds under the following assumptions:

- Newtonian fluid with bulk viscosity $(K \geq 0, \mu>0)$
- Fourier's law for heat conduction ($\boldsymbol{q}=-k \boldsymbol{\nabla} T, k>0$)
(a) Apply Reynolds' transport theorem to inequality (1) and simplify the expression to obtain

$$
\rho \frac{D s}{D t}+\nabla \cdot \frac{\boldsymbol{q}}{T} \geq 0
$$

(b) Use the relation $T d s=d e+p d\left(\frac{1}{\rho}\right)$ to rewrite the term $\frac{D s}{D t}$ in terms of energy, pressure and density. Then, use energy and mass conservation to rewrite the inequality as

$$
\boldsymbol{\sigma}: \nabla \boldsymbol{v}+p \nabla \cdot \boldsymbol{v}-\frac{\boldsymbol{q} \cdot \boldsymbol{\nabla} T}{T} \geq 0 .
$$

(c) Use the constitutive relation and Fourier's law to show that the inequality holds.
3. A deposit of height H, full of water and opened to the atmosphere, has an orifice at height h through which the water is being ejected steadily. The water streamline out of the deposit leaves the orifice horizontally and reaches the ground at a distance d from the deposit's basis. Considering the water density ρ and a gravitational acceleration g,
(a) Obtain an expression for the velocity $\boldsymbol{v}=(u, w)$ of the ejected water stream.
(b) How does the distance d depend on the height h ? Write the relation $d=d(h)$.
(c) For a value $H=10 m$, which is the orifice's height h that maximises the distance d ?

Adrorbed Flure Dyomes Homawir 1
(1)

$=\hat{(10.3}$

$$
\begin{aligned}
& \Pi_{2}=v_{6} c_{0}^{b} f^{\prime}, y_{2}=
\end{aligned}
$$

Higecthars:
$n_{: i}: \frac{a_{n}}{V_{r n}=}=\frac{c_{p}}{V_{t_{p}}} \rightarrow V_{p_{n} n^{2}}=V_{4 p} \sqrt{\frac{a_{m}}{a_{p}}}$
$\Gamma_{1}: \frac{p_{1}}{\rho_{1}=m}=\frac{p_{2}}{p_{x}}$

2)

$$
\frac{D}{D-} \int_{V} \rho_{V} d v \geqq-\int_{5} \frac{q \cdot n}{T} d s
$$

- Mutara fled ($\alpha>0, \mu>0$)

$$
-q=-k \pi \quad(k>0)
$$

an) Use traspal theorem. (Derivatres inside integal)

$$
\begin{aligned}
\int_{v} \frac{D(\rho s)}{D E} d v & \left.+\int_{S}(\rho s)\right) v o \cap d S \geqslant-\int_{s} \frac{q_{0} n}{T} d S \\
& +G \cos s \quad \int_{s} \rightarrow S_{v}(\text { twice })
\end{aligned}
$$

$$
\begin{aligned}
& \text { Garss }\left\{\begin{array}{l}
-\int_{s} \frac{q \cdot n}{T} d S=-\int_{V} \nabla \cdot \frac{q}{T} d V \\
\int_{s}(\rho s) V \circ n d S=-\int_{V} \nabla \cdot(\rho s V) d V \\
\\
\int \frac{D(\rho S)}{D E} d V+\int_{V} V \cdot(\rho s V) d V \geqslant-\int_{V} \nabla \cdot\left(\frac{q}{T}\right) d V \\
\frac{D(\rho \xi)}{D G} d+\nabla \cdot(\rho s V)+V \cdot \frac{q}{T} \geqslant 0
\end{array},\right.
\end{aligned}
$$ \rfloor chen

$$
\underbrace{D \text { Lchen }}_{S_{D} D_{D}}+\underbrace{\frac{D s}{D E}+\rho^{\prime} \nabla \cdot v}_{D_{s}+s \nabla \cdot V}+\nabla \cdot \frac{q}{T} \geqslant 0
$$

$$
\left[\frac{D \rho}{D}+7 \cdot \frac{q}{T} \geqslant 0\right.
$$

c)

$$
\sigma: \nabla v+\rho \nabla 0 V-\frac{q \cdot \nabla T}{T}>0 \quad\left\{\begin{array}{l}
\text { Sikwoty } \quad \text { Marces Bon } \\
K>0 \\
\mu>0 \quad K=\lambda+\frac{2}{3} \mu-2 \backslash>9 \\
k>0 \\
0
\end{array}\right.
$$

U这 Fanes lour as corrithive relate

$$
q=-k \sqrt{\pi}
$$

(Neutan: $\underbrace{\sigma=-p I+\lambda G r\left(\nabla^{5} v\right) I+2 \mu \nabla^{s} \Sigma}$

Faves $\sigma: \nabla v+\rho V \cdot v+\frac{b \times(\nabla T)^{2}}{T} \gg 0$

$$
\begin{aligned}
& -\rho I: \nabla v+\lambda \operatorname{cr}\left(\nabla^{S} v\right) \dot{I^{*}}+2 \mu \underbrace{\nabla^{5} v i \nabla v}_{(\nabla \cdot v)^{2}}+\rho \nabla \circ v+\frac{\phi\left(\frac{\nabla T)^{2}}{T} \geqslant 0 .\right.}{}
\end{aligned}
$$

(3) $=$

$$
\begin{aligned}
& \text { a) } v=(u, u) \\
& \left.\begin{array}{l}
u=v_{0} \\
\frac{\partial w}{\partial t}=g \rightarrow w=g t+c_{i}=g t
\end{array}\right\} \\
& (=c, \omega=c \\
& \text { C= }
\end{aligned}
$$

b) $d(h) ?$

$$
\begin{aligned}
& \int_{1}^{2} \frac{\partial v}{\partial t} \cdot d s+\frac{v_{0}^{2}}{2}+\frac{p}{\rho}+z_{2}=\frac{\rho a_{a}}{\rho}+z_{1}+\frac{v_{c}}{b_{0}^{2}} \\
& \begin{array}{l}
\int_{i}^{2} \frac{\sqrt{v}}{t} \cdot d s+\frac{v_{0}^{2}}{2}-g(H-h)=0 \\
\simeq 0^{(M+d)} \quad \frac{V_{0}^{2}}{2}=g(H-h)
\end{array} \\
& \begin{array}{ll}
\left.\frac{2}{(u-d)}\right) & \frac{V_{0}^{2}}{2}=g(H-h) \\
& V_{0}=\sqrt{2 g(H-h)}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{y=h}{t=-}
\end{aligned}
$$

$$
\begin{aligned}
& d(h)=2 \sqrt{(1+-h) h}
\end{aligned}
$$

c) for $H=10 \mathrm{~m}$
¿h thet maximius d ?

$$
\frac{\partial d(h)}{\partial h}=0 \rightarrow \frac{\partial}{\partial h}(\sqrt{(H-h) h})=0 \rightarrow \frac{H-2 h}{2 \sqrt{(H-h) h}}=0-\underset{\substack{H=2 h}}{\substack{h=\frac{H}{2} \\ m=2}} 4 / 4
$$

