Nonlinear problems \& constraints

Riccardo Rossi \& Pooyan Dadvand

Newton-Raphson Method

Let's consider we have a problema of the type

$$
f(x)=0
$$

Our goal is to find "x" such that such equation is verified.
Newton method is a technique to find the solution of such type of problems with optimal convergence rate.

Newton-Raphson method

The idea is that if f is smooth, we can asume that

$$
0=f(x) \approx f\left(x_{i}+d x\right) \approx f\left(x_{i}\right)+\frac{\partial f}{\partial x} d x+O\left(d x^{2}\right)
$$

This means that given an initial guess x_{i}
We can find a correction $d x$ as

$$
-\frac{\partial f}{\partial x} d x=f\left(x_{i}\right)
$$

A practical example

Let's imagine we want to find the solution of

$$
x^{2}=2
$$

Of course we know the solution ... $x=\sqrt{2}$,
however ... can we solve this by NR?

A practical example

First of all we need to cast the problema in residual form

$$
f(x)=2-x^{2}
$$

NR only finds zeros!!

$$
\begin{gathered}
L H S=-\frac{\partial f}{\partial x}=2 x \\
R H S=2-x^{2}
\end{gathered}
$$

A practical example

Let's assume that our first guess is $x_{0}=1.0$

x	LHS	RHS	dx
1.0	2.0	1.0	0.5
1.5	3.0	-0.25	$-0,083333$
1,41666	2,833333	$-0,006943$	$-0,00245$
1,414	\ldots	\ldots	\ldots

Does it always converge?

Let's try to compute the cubic root of 2 :

$$
f(x)=2-x^{3}
$$

We start also from $x_{0}=1.0$

x	LHS	RHS	dx
1	3	1	0,33333333
1,33333333	4	$-0,37037037$	$-0,09259259$
1,24074074	3,72222222	0,08995707	0,02416757
1,26490831	3,79472493	$-0,02384449$	$-0,00628359$
1,25862472	3,77587417	0,00616702	0,00163327
1,26025799	3,78077398	$-0,00160502$	$-0,00042452$
1,25983347	3,77950041	0,00041704	0,00011034
1,25994381	3,77983144	$-0,00010841$	$-2,868 \mathrm{E}-05$
1,25991513	3,7797454	$2,8177 \mathrm{E}-05$	$7,4546 \mathrm{E}-06$

Does it always converge?

However if we start from $x_{0}=5.0$, which is farther away from the solution, we get

x	LHS	RHS	dx
5	15	-123	$-8,2$
$-3,2$	$-9,6$	34,768	$-3,62166667$
$-6,82166667$	$-20,465$	319,447187	$-15,6094399$
$-22,4311065$	$-67,2933196$	11288,3131	$-167,747901$
$-190,179007$	$-570,537022$	6878406,75	$-12056,0218$
$-12246,2008$	$-36738,6023$	$1,8366 \mathrm{E}+12$	$-49989811,2$
$-50002057,4$	-150006172	$1,2502 \mathrm{E}+23$	$-8,334 \mathrm{E}+14$
$-8,334 \mathrm{E}+14$	$-2,5002 \mathrm{E}+15$	$5,7885 \mathrm{E}+44$	$-2,3152 \mathrm{E}+29$
$-2,3152 \mathrm{E}+29$	$-6,9456 \mathrm{E}+29$	$1,241 \mathrm{E}+88$	$-1,7867 \mathrm{E}+58$

CONCLUSION

Newton Raphson:

- Converges very fast
- Approximatimatively doubles accurate digits at each iteration
- May diverge equally fast if initial guess is not good enough
- It is not very robust...

Multidimensional case

Let's suppose we want to solve the following set of equations:

$$
\begin{gathered}
x^{2}+y^{2}=1 \\
x-y=0
\end{gathered}
$$

This represents the intersection of a unit circle with a line. Solutions are (1,1), (-1,-1)

Multidimensional case

To apply NR we must cast this in residual form.

$$
R(x, y):=\binom{1-x^{2}-y^{2}}{y-x}
$$

We need now to compute the gradient of R :

$$
L H S:=\left(\begin{array}{cc}
-\partial R_{0} / \partial x & -\partial R_{0} / \partial y \\
-\partial R_{1} / \partial x & -\partial R_{1} / \partial y
\end{array}\right)
$$

Multidimensional case

To apply NR we must cast this in residual form.

$$
R(x, y):=\binom{1-x^{2}-y^{2}}{y-x}
$$

We need now to compute the gradient of R :

$$
L H S:=\left(\begin{array}{cc}
-\frac{\partial R_{0}}{\partial x} & -\frac{\partial R_{0}}{\partial y} \\
-\frac{\partial R_{1}}{\partial x} & -\frac{\partial R_{1}}{\partial y}
\end{array}\right)
$$

NR iteration

The NR iteration thus proceeds as follows:

1. Choose a starting guess $\left(x_{i}, y_{i}\right)$
2. Evaluate $\operatorname{RHS}\left(x_{i}, y_{i}\right) \& \operatorname{LHS}\left(x_{i}, y_{i}\right)$
3. Solve LHS $\binom{d x}{d y}=R H S$
4. Update solution $\binom{x_{i+1}}{y_{i+1}}=\binom{x_{i}+d x}{y_{i}+d y}$
5. check converged \& eventually go back to 1

Multidimensional case

For the specific case at hand, this gives

$$
L H S:=\left(\begin{array}{cc}
2 x & 2 y \\
1 & -1
\end{array}\right)
$$

$-0,00122549$ $-0,00122549$

-1,0619E-06
$-1,0619 \mathrm{E}-06$

```
-2,2553E-12
```

$-7,9737 E-13$
$-7,9737 \mathrm{E}-13$

FEM problems

Let's now focus on the FEM. A typical, potentially nonlinear, FEM problem gives:

$$
R H S(u)=b-K(u) u
$$

If we apply NR technique

$$
L H S(u):=-\frac{\partial b-K(u) u}{\partial u}=-\frac{\partial K(u)}{\partial u} u-K(u)
$$

Normally not done this way since $\frac{\partial K(u)}{\partial u}$ is a third order tensor

PICARD's method

It is common to simplify the previous to:

$$
\begin{gathered}
\boldsymbol{R H S}(u)=b-K(u) u \\
L H S(u)=-U-K(u)
\end{gathered}
$$

Giving rise to a method called PICARD's method. Note that this equivalent to doing:

$$
K\left(u_{o l d}\right) u=b
$$

PICARD's method

- Conceptually simple
- No need to compute the exact Jacobian
- Convergence more robust than NR (often it converges starting from a worst initial approximation to the solution)
On the bad side:
- Slow convergence

APPLICATION OF CONSTRAINTS

Let's consider a simple linear problem

1D laplacian problem (a value of 5 would be applied on a node u_{0})

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right)
$$

For whatever reason we want to impose that $u_{3}=u_{1}+1$

HOW DO WE DO IT?

Application of constraint

Since the constraint is linear in the unknowns, we can express it as

$$
\left(\begin{array}{lll}
-1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=1
$$

Which is normally written in matrix form as

$$
\boldsymbol{H} \boldsymbol{u}=\boldsymbol{e}(\text { we'll assume } e=1)
$$

If we assume that the previous problem is expressed as $\mathbf{K} \boldsymbol{u}=\boldsymbol{b}$

Lagrange Multipliers

A "recipe" exists for imposing the constraint while respecting the linear problem of interest: it consists in writing the following problem

$$
\left(\begin{array}{cc}
\boldsymbol{K} & \boldsymbol{H}^{t} \\
\boldsymbol{H} & 0
\end{array}\right)\binom{\boldsymbol{u}}{\lambda}=\binom{\boldsymbol{b}}{\boldsymbol{e}}
$$

we'll assume $e=1$ in doing the math

Doing the maths

K with constraints

2	-1	0	-1
-1	2	-1	0
0	-1	1	1
-1	0	1	0

inverse

1	1	1	0
1	1,5	1	0,5
1	1	1	1
0	0,5	1	$-0,5$

SOLUTION

Is there a systematic way to do it?

YES!!

Let's assume that:

- $\boldsymbol{f}(\boldsymbol{u})$ is a functional describing our problem
- $\mathbf{g}(\boldsymbol{u})$ is the the functional describing our constraint.

Both could be non-linear!

"Lagrangian"

We can define a functional of the type

$$
\Psi(\boldsymbol{u}, \lambda):=f(\boldsymbol{u})+\lambda \boldsymbol{g}(\boldsymbol{u})
$$

The imposition of the constraint on \boldsymbol{f} can be obtained by minimizing the functional

$$
\Psi(\boldsymbol{u}, \boldsymbol{\lambda})
$$

How?

Defining the problem

1 - DEFINE AN RHS

$$
R H S(\boldsymbol{u}, \boldsymbol{\lambda}):=\binom{\frac{\partial \Psi(\boldsymbol{u}, \boldsymbol{\lambda})}{\partial \boldsymbol{u}}}{\frac{\partial \Psi(\boldsymbol{u}, \boldsymbol{\lambda})}{\partial \boldsymbol{\lambda}}}
$$

2 - MINIMIZE THE RHS (for example by NR)

$$
L H S(\boldsymbol{u}, \lambda):=-\frac{\partial R H S(\boldsymbol{u}, \lambda)}{\partial(\boldsymbol{u}, \lambda)}=-\left(\begin{array}{ll}
\frac{\partial^{2} \Psi(\boldsymbol{u}, \lambda)}{\partial \boldsymbol{u} \partial \boldsymbol{u}} & \frac{\partial^{2} \Psi(\boldsymbol{u}, \lambda)}{\partial \boldsymbol{u} \partial \lambda} \\
\frac{\partial^{2} \Psi(\boldsymbol{u}, \lambda)}{\partial \lambda \partial \boldsymbol{u}} & \frac{\partial^{2} \Psi(\boldsymbol{u}, \lambda)}{\partial \lambda \partial \lambda}
\end{array}\right)
$$

And in application to our model problem??

Our model problema was $\mathbf{K} \boldsymbol{u}=\boldsymbol{b}$ subjected to the constraint $\boldsymbol{H u}=\boldsymbol{e}$ In order to apply the abstract technique we just described, we must define the functionals $f(\boldsymbol{u})$ and $\boldsymbol{g}(\boldsymbol{u})$
Interestingly we don't need their exact expression!! We can FORMALLY take

- $f(\boldsymbol{u})$ such that $\frac{\partial f(u)}{\partial u}=\mathbf{b}-K \boldsymbol{u}$
- $g(\boldsymbol{u})=\mathbf{e}-\boldsymbol{H u}$

On the model problem

$$
\begin{aligned}
R H S(\boldsymbol{u}, \boldsymbol{\lambda}) & :=\binom{\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{H}^{\boldsymbol{t}} \boldsymbol{\lambda}}{\boldsymbol{e}-\boldsymbol{H}^{2} \boldsymbol{u}} \\
L H S(\boldsymbol{u}, \boldsymbol{\lambda}) & :=\left(\begin{array}{cc}
\boldsymbol{K} & \boldsymbol{H}^{t} \\
\boldsymbol{H} & \mathbf{0}
\end{array}\right)
\end{aligned}
$$

Which gives the iteration

$$
\left(\begin{array}{cc}
K & H^{t} \\
H & 0
\end{array}\right)\binom{d u}{d \lambda}=\binom{b-K u-H^{t} \lambda}{e-H u}
$$

Which completed by

$$
u=u+d u
$$

Is completely equivalent to the original problem (just take the initial guess as 0 for a proof)

Advantages \& disadvantages of Lagrange Multipliers method

- Very General \& accurate
- Constraints are exactly enforced

It would be "the method of choice", however:

- Increases the number of unknowns
- Problem is not any longer SPD, even if the original unconstrained problem is \rightarrow typically plays badly with Iterative Solvers
- Zeros appear on the main diagonal
- User must take care not to repeat constraints. If the same condition is asked twice $>$ linearly dependent constraints \rightarrow FAILURE
- STABILIZATION MAY BE NEEDED TO MAKE THE PROBLEM SOLVABLE (out of scope for now)

"penalty-based" alternatives

Penalty method - defines a new functional as

$$
\Psi(\boldsymbol{u}):=f(\boldsymbol{u})-\frac{\boldsymbol{k}}{2}(\boldsymbol{g}(\boldsymbol{u}) \cdot \boldsymbol{g}(\boldsymbol{u}))
$$

Where " k " is a large number, called penalty parameter

Penalty method

For our model problem:

$$
\Psi(u):=f(u)-\frac{k}{2}((e-H u) \cdot(e-H u))
$$

Hence, as $R H S(\boldsymbol{u}):=\frac{\partial \Psi(u, \lambda)}{\partial \boldsymbol{u}}$
We get:

$$
\operatorname{RHS}(\boldsymbol{u}):=\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{k}((\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u}) \cdot(-\boldsymbol{H}))
$$

And after minor manipulation

$$
\underline{\operatorname{RHS}}(\boldsymbol{u}):=\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}+\boldsymbol{k} \boldsymbol{H}^{t}(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})
$$

Penalty method

Applying NR method:

$$
L H S(\boldsymbol{u}):=-\frac{\partial R H S(\boldsymbol{u})}{\partial(\boldsymbol{u})}
$$

We get

$$
L H S(\boldsymbol{u})=\boldsymbol{K}+\boldsymbol{k} \boldsymbol{H}^{t} \boldsymbol{H}
$$

Penalty Method

In application to our problem we get (assuming a zero initial guess)

penalty
1000

modified matrix

1002	-1	-1000
-1	2	-1
-1000	-1	1001

RHS with
penalty

Penalty method

- Easy to implement and pretty general
- Equivalent constraints can be enforced multiple times without any problem.
- No additional unknowns

HOWEVER (on the bad side):

- Large " k " needed to enforce the constraints. (constraints "compete" with the stiffness matrix K) \rightarrow LEADS TO ILL CONDITIONATED MATRICES
- Inaccurate (constraints can be violated)

Penalty in mixed form

It is interesting (we'll see soon why) to observe that the penalty method can be recast in a form similar to the lagrange multipliers.
To do so we can start with the expression
of the residual which corresponds to the penalty method

$$
\operatorname{RHS}(\boldsymbol{u}):=\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}+\boldsymbol{k} \boldsymbol{H}^{t}(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})
$$

And introduce a new var $\boldsymbol{\lambda}_{\boldsymbol{k}}:=-\boldsymbol{k}(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})$

Penalty in mixed form

This leads to the definition of a "mixed" RHS

$$
\operatorname{RHS}\left(\boldsymbol{u}, \boldsymbol{\lambda}_{\boldsymbol{k}}\right):=\binom{\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{H}^{\boldsymbol{t}} \boldsymbol{\lambda}_{\boldsymbol{k}}}{(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})+\frac{1}{k} \lambda_{\boldsymbol{k}}}
$$

To which corresponds the NR iteration

$$
\left(\begin{array}{cc}
\boldsymbol{K} & \boldsymbol{H}^{\boldsymbol{t}} \\
\boldsymbol{H} & -\frac{1}{k}
\end{array}\right)\binom{\boldsymbol{d} \boldsymbol{u}}{\boldsymbol{d} \lambda_{\boldsymbol{k}}}=\binom{\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{H}^{\boldsymbol{t}} \boldsymbol{\lambda}_{\boldsymbol{k}}}{\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u}+\frac{1}{k} \boldsymbol{\lambda}_{\boldsymbol{k}}}
$$

Why the mixed form?

When written in mixed form, the system conditioning is less sensitive to the value of the penalty parameter " k "

It may make sense to use it since it allows using a larger value of \mathbf{k}

Augmented lagrangian method

It is a combination of "Lagrange" \& "Penalty" methods

$$
\Psi(\boldsymbol{u}):=f(\boldsymbol{u})-\frac{\boldsymbol{k}}{2}(\boldsymbol{g}(\boldsymbol{u}) \cdot \boldsymbol{g}(\boldsymbol{u}))+\lambda_{\boldsymbol{k}_{o l d}} \cdot \boldsymbol{g}(\boldsymbol{u})
$$

Where $\boldsymbol{\lambda}_{\boldsymbol{k}_{\text {old }}}$ is modified at every iteration as

$$
\lambda_{k_{o l d}}=\lambda_{k_{o l d}}-k g\left(u_{o l d}\right)
$$

Augmented lagrangian method

For our model problem:
$\Psi(\boldsymbol{u}):=f(\boldsymbol{u})-\frac{\boldsymbol{k}}{\mathbf{2}}((\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u}) \cdot(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u}))+\lambda_{\text {old }} \cdot(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})$
using $R H S(\boldsymbol{u}):=\frac{\partial \Psi(u, \lambda)}{\partial u}$ we get:

$$
\operatorname{RHS}(\boldsymbol{u}):=\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{k}((\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u}) \cdot(-\boldsymbol{H}))-\boldsymbol{H}^{t} \boldsymbol{\lambda}_{\boldsymbol{o l d}}
$$

And after minor manipulation
Note that this is the value to be used in the next iteration!!
$\lambda_{k}=\lambda_{\text {old }}-k(e-H u)$

$$
\operatorname{RHS}(\boldsymbol{u}):=\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{H}^{t}\left(\lambda_{\text {old }}-\boldsymbol{k}(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})\right)
$$

Augmented lagrangian in mixed form

Introducing an auxiliary variable

$$
\lambda_{\boldsymbol{k}}=\lambda_{o l d}-\boldsymbol{k}(\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u})
$$

we arrive to the iterative scheme:

- STEP1 solve for until convergence

$$
\left(\begin{array}{cc}
\boldsymbol{K} & \boldsymbol{H}^{t} \\
\boldsymbol{H} & -\frac{1}{k}
\end{array}\right)\binom{\boldsymbol{d} \boldsymbol{u}}{\boldsymbol{d} \boldsymbol{\lambda}_{\boldsymbol{k}}}=\binom{\boldsymbol{b}-\boldsymbol{K} \boldsymbol{u}-\boldsymbol{H}^{\boldsymbol{t}}\left(\boldsymbol{\lambda}_{\boldsymbol{k}}\right)}{\boldsymbol{e}-\boldsymbol{H} \boldsymbol{u}-\frac{1}{k}\left(\lambda_{k}-\lambda_{o l d}\right)}
$$

- STEP2

$$
\lambda_{o l d}=\lambda_{k}=\lambda_{o l d}-k(e-H u)
$$

- STEP3 repeat 1 and 2 until convergence in $\lambda_{\text {old }}$

Augmented lagrangian

- Easy to implement and pretty general
- Equivalent constraints can be enforced multiple times without any problem.
- Large penalty not needed (at convergence) HOWEVER (on the bad side):
- A linear problem is transformed into an iterative process
- If the iterative process is stopped before convergence constraint is not respected exactly

Master-Slave elimination

An alternative approach is the so-called master-slave elimination.

We recall that our model problem was

$$
\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right)
$$

Subjected to the additional constraint:

$$
u_{3}=u_{1}+1
$$

Master-slave elimination

The idea is to build the constraint within the unknowns. In the specific case, u_{3} can be expressed in terms of u_{1} and u_{2} as follows

$$
\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right)\binom{u_{1}}{u_{2}}+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Or in short

$$
u=T u^{*}+\boldsymbol{q}
$$

Master-slave elimination

We can now substitute $\boldsymbol{u}=\boldsymbol{T} \boldsymbol{u}^{*}+\boldsymbol{q}$
In the original problem $\boldsymbol{K} \boldsymbol{u}=\boldsymbol{b}$ to get

$$
K\left(T u^{*}+q\right)=b
$$

To make the problem solvable we then left multiply it by $\boldsymbol{T}^{\boldsymbol{t}}$

$$
T^{t} K\left(T u^{*}+q\right)=T^{t} b
$$

Or

$$
T^{t} K T u^{*}=T^{t} b-T^{t} K q
$$

Master-slave elimination

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1
\end{array} 1\binom{u_{1}^{*}}{u_{2}^{*}}\right. \\
& =\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
5 \\
0 \\
0
\end{array}\right)-\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

Simplifying this gives

$$
\left(\begin{array}{cc}
3 & -2 \\
-2 & 2
\end{array}\right)\binom{u_{1}^{*}}{u_{2}^{*}}=\binom{4}{1} \rightarrow\binom{u_{1}^{*}}{u_{2}^{*}}=\binom{5}{5.5}
$$

Once we recover the value of u_{3} we can immediately verify that the solution is the same as before

Master-slave elimination

- Smaller, well conditioned systems
- Preserves symmetry and matrix properties

HOWEVER (on the bad side):

- Not very general (how to do for a generic nonlinear constraint??)
- Can be (very) difficult to implement
- User must be extremely careful in applying constraints exactly once
- User must identify variables to be eliminated

bibliography

http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch 08.d/IFEM.Ch08.pdf
http://www.colorado.edu/engineering/CAS/courses.d/IFEM.d/IFEM.Ch 09.d/IFEM.Ch09.pdf

