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Newton-Raphson Method

Let’s consider we have a problema of the type
𝑓𝑓 𝑥𝑥 = 0

Our goal is to find “x” such that such equation is verified. 
Newton method is a technique to find the solution of such type of 
problems with optimal convergence rate.



Newton-Raphson method

The idea is that if f is smooth, we can asume that

0 = 𝑓𝑓 𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥𝑖𝑖 + 𝑑𝑑𝑥𝑥 ≈ 𝑓𝑓 𝑥𝑥𝑖𝑖 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥 + 𝑂𝑂(𝑑𝑑𝑥𝑥2)

This means that given an initial guess 𝑥𝑥𝑖𝑖
We can find a correction 𝑑𝑑𝑥𝑥 as

−
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

𝑑𝑑𝑥𝑥 = 𝑓𝑓 𝑥𝑥𝑖𝑖



A practical example

Let’s imagine we want to find the solution of
𝑥𝑥2 = 2

Of course we know the solution … 𝑥𝑥 = 2,

however … can we solve this by NR?



A practical example

First of all we need to cast the problema in residual form
𝑓𝑓 𝑥𝑥 = 2 − 𝑥𝑥2

NR only finds zeros!!

𝐿𝐿𝐿𝐿𝐿𝐿 = −
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 2𝑥𝑥
𝑅𝑅𝐿𝐿𝐿𝐿 = 2 − 𝑥𝑥2



A practical example

Let’s assume that our first guess is 𝑥𝑥0 = 1.0

x LHS RHS dx

1.0 2.0 1.0 0.5

1.5 3.0 -0.25 -0,083333

1,41666 2,833333 -0,006943 -0,00245

1,414 … … …



Does it always converge?
Let’s try to compute the cubic root of 2:

𝑓𝑓 𝑥𝑥 = 2 − 𝑥𝑥3

We start also from 𝑥𝑥0 = 1.0

x LHS RHS dx

1 3 1 0,33333333

1,33333333 4 -0,37037037 -0,09259259

1,24074074 3,72222222 0,08995707 0,02416757

1,26490831 3,79472493 -0,02384449 -0,00628359

1,25862472 3,77587417 0,00616702 0,00163327

1,26025799 3,78077398 -0,00160502 -0,00042452

1,25983347 3,77950041 0,00041704 0,00011034

1,25994381 3,77983144 -0,00010841 -2,868E-05

1,25991513 3,7797454 2,8177E-05 7,4546E-06



Does it always converge?
However if we start from 𝑥𝑥0 = 5.0, which is farther away from the
solution, we get

x LHS RHS dx

5 15 -123 -8,2

-3,2 -9,6 34,768 -3,62166667

-6,82166667 -20,465 319,447187 -15,6094399

-22,4311065 -67,2933196 11288,3131 -167,747901

-190,179007 -570,537022 6878406,75 -12056,0218

-12246,2008 -36738,6023 1,8366E+12 -49989811,2

-50002057,4 -150006172 1,2502E+23 -8,334E+14

-8,334E+14 -2,5002E+15 5,7885E+44 -2,3152E+29

-2,3152E+29 -6,9456E+29 1,241E+88 -1,7867E+58



CONCLUSION

Newton Raphson:
• Converges very fast

• Approximatimatively doubles accurate digits at each iteration

• May diverge equally fast if initial guess is not good enough
• It is not very robust…



Multidimensional case

Let’s suppose we want to solve the following set of equations:
𝑥𝑥2 + 𝑦𝑦2 = 1
𝑥𝑥 − 𝑦𝑦 = 0

This represents the intersection of a unit circle with a line. Solutions
are (1,1), (-1,-1)



Multidimensional case

To apply NR we must cast this in residual form.

𝑅𝑅 𝑥𝑥,𝑦𝑦 ≔ 1 − 𝑥𝑥2 − 𝑦𝑦2
𝑦𝑦 − 𝑥𝑥

We need now to compute the gradient of R:

𝐿𝐿𝐿𝐿𝐿𝐿 ≔
− �𝜕𝜕𝑅𝑅0

𝜕𝜕𝑥𝑥 − �𝜕𝜕𝑅𝑅0
𝜕𝜕𝑦𝑦

− �𝜕𝜕𝑅𝑅1
𝜕𝜕𝑥𝑥 − �𝜕𝜕𝑅𝑅1

𝜕𝜕𝑦𝑦



Multidimensional case

To apply NR we must cast this in residual form.

𝑅𝑅 𝑥𝑥,𝑦𝑦 ≔ 1 − 𝑥𝑥2 − 𝑦𝑦2
𝑦𝑦 − 𝑥𝑥

We need now to compute the gradient of R:

𝐿𝐿𝐿𝐿𝐿𝐿 ≔
−
𝜕𝜕𝑅𝑅0
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑅𝑅0
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑅𝑅1
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑅𝑅1
𝜕𝜕𝑦𝑦



NR iteration

The NR iteration thus proceeds as follows:
1. Choose a starting guess 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖
2. Evaluate RHS 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 & LHS 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖

3. Solve 𝐿𝐿𝐿𝐿𝐿𝐿 𝑑𝑑𝑥𝑥
𝑑𝑑𝑦𝑦 = 𝑅𝑅𝐿𝐿𝐿𝐿

4. Update solution
𝑥𝑥𝑖𝑖+1
𝑦𝑦𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 𝑑𝑑𝑥𝑥

𝑦𝑦𝑖𝑖 + 𝑑𝑑𝑦𝑦
5. check converged & eventually go back to 1



Multidimensional case
For the specific case at hand, this gives

𝐿𝐿𝐿𝐿𝐿𝐿 ≔ 2𝑥𝑥 2𝑦𝑦
1 −1

x y lhs inv rhs dx
1 0 2 0 0,5 0 0 0

ITERATION 1 1 -1 0,5 -1 -1 1

1 1 2 2 0,25 0,5 -1 -0,25
ITERATION2 1 -1 0,25 -0,5 0 -0,25

0,75 0,75 1,5 1,5 0,33333333 0,5 -0,125 -0,04166667
ITERATION 3 1 -1 0,33333333 -0,5 0 -0,04166667

0,70833333 0,70833333 1,41666667 1,41666667 0,35294118 0,5 -0,00347222 -0,00122549
ITERATION 4 1 -1 0,35294118 -0,5 0 -0,00122549

0,70710784 0,70710784 1,41421569 1,41421569 0,35355286 0,5 -3,0037E-06 -1,0619E-06
ITERATION 5 1 -1 0,35355286 -0,5 0 -1,0619E-06

0,70710678 0,70710678 1,41421356 1,41421356 0,35355339 0,5 -2,2553E-12 -7,9737E-13
ITERATION 6 1 -1 0,35355339 -0,5 0 -7,9737E-13

0,70710678 0,70710678 1,41421356 1,41421356 0,35355339 0,5 0 0
ITERATION 7 1 -1 0,35355339 -0,5 0 0



FEM problems
Let’s now focus on the FEM. A typical, potentially nonlinear, FEM 
problem gives:

𝑹𝑹𝑹𝑹𝑹𝑹 𝒖𝒖 = 𝒃𝒃 − 𝑲𝑲 𝒖𝒖 𝒖𝒖
If we apply NR technique

𝑳𝑳𝑹𝑹𝑹𝑹 𝒖𝒖 : = −
𝝏𝝏𝒃𝒃 − 𝑲𝑲 𝒖𝒖 𝒖𝒖

𝝏𝝏𝒖𝒖
= −

𝝏𝝏𝑲𝑲 𝒖𝒖
𝝏𝝏𝒖𝒖

𝒖𝒖 − 𝑲𝑲 𝒖𝒖

Normally not done this way since 𝝏𝝏𝑲𝑲 𝒖𝒖
𝝏𝝏𝒖𝒖

is a third order tensor



PICARD’s method

It is common to simplify the previous to:
𝑹𝑹𝑹𝑹𝑹𝑹 𝒖𝒖 = 𝒃𝒃 − 𝑲𝑲 𝒖𝒖 𝒖𝒖

𝑳𝑳𝑹𝑹𝑹𝑹 𝒖𝒖 = −
𝝏𝝏𝑲𝑲 𝒖𝒖
𝝏𝝏𝒖𝒖

𝒖𝒖 − 𝑲𝑲 𝒖𝒖

Giving rise to a method called PICARD’s method. Note that this
equivalent to doing:

𝑲𝑲 𝒖𝒖𝒐𝒐𝒐𝒐𝒐𝒐 𝒖𝒖 = 𝒃𝒃



PICARD’s method

• Conceptually simple
• No need to compute the exact Jacobian
• Convergence more robust than NR (often it converges starting from

a worst initial approximation to the solution)
On the bad side:
• Slow convergence



APPLICATION OF 
CONSTRAINTS



Let’s consider a simple linear problem

1D laplacian problem (a value of 5 would be applied on a node 𝑢𝑢0)
2 −1 0
−1 2 −1
0 −1 1

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3

=
5
0
0

For whatever reason we want to impose that 𝑢𝑢3 = 𝑢𝑢1 + 1

HOW DO WE DO IT?



Application of constraint

Since the constraint is linear in the unknowns, we can express it as

−1 0 1
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3

= 1

Which is normally written in matrix form as
𝑹𝑹𝒖𝒖 = 𝒆𝒆 (we’ll assume 𝑒𝑒 = 1)

If we assume that the previous problem is expressed as 𝐊𝐊𝒖𝒖 = 𝒃𝒃



Lagrange Multipliers

A “recipe” exists for imposing the constraint while respecting the linear 
problem of interest: it consists in writing the following problem

𝑲𝑲 𝑹𝑹𝒕𝒕

𝑹𝑹 𝟎𝟎
𝒖𝒖
𝝀𝝀 = 𝒃𝒃

𝒆𝒆
we’ll assume 𝑒𝑒 = 1in doing the math



Doing the maths

K with constraints RHS
2 -1 0 -1 5

-1 2 -1 0 0
0 -1 1 1 0

-1 0 1 0 1

inverse SOLUTION
1 1 1 0 5 u1
1 1,5 1 0,5 5,5 u2
1 1 1 1 6 u3
0 0,5 1 -0,5 -0,5 lambda



Is there a systematic way to do it?

YES!!

Let’s assume that:
• 𝒇𝒇(𝒖𝒖) is a functional describing our problem
• 𝐠𝐠(𝒖𝒖) is the the functional describing our constraint. 
Both could be non-linear!



“Lagrangian”

We can define a functional of the type
Ψ 𝒖𝒖,𝝀𝝀 ≔ 𝑓𝑓 𝒖𝒖 + 𝝀𝝀𝝀𝝀(𝒖𝒖)

The imposition of the constraint on 𝒇𝒇 can be obtained by minimizing
the functional

Ψ 𝒖𝒖,𝝀𝝀

How? 



Defining the problem

1 - DEFINE AN RHS

𝑅𝑅𝐿𝐿𝐿𝐿 𝒖𝒖,𝝀𝝀 ≔

𝜕𝜕Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝒖𝒖

𝜕𝜕Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝝀𝝀

2 – MINIMIZE THE RHS (for example by NR)

𝐿𝐿𝐿𝐿𝐿𝐿 𝒖𝒖,𝝀𝝀 ≔ −𝜕𝜕𝑅𝑅𝑅𝑅𝑅𝑅 𝒖𝒖,𝝀𝝀
𝜕𝜕 𝒖𝒖,𝝀𝝀 = −

𝜕𝜕2Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝒖𝒖𝜕𝜕𝒖𝒖

𝜕𝜕2Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝒖𝒖𝜕𝜕𝝀𝝀

𝜕𝜕2Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝜆𝜆𝜕𝜕𝒖𝒖

𝜕𝜕2Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝝀𝝀𝜕𝜕𝝀𝝀



And in application to our model problem??

Our model problema was 𝐊𝐊𝒖𝒖 = 𝒃𝒃 subjected to the constraint 𝑹𝑹𝒖𝒖 = 𝒆𝒆
In order to apply the abstract technique we just described, we must
define the functionals 𝑓𝑓 𝒖𝒖 and 𝝀𝝀(𝒖𝒖)
Interestingly we don’t need their exact expression!! We can 
FORMALLY take
• 𝑓𝑓 𝒖𝒖 such that 𝜕𝜕𝑓𝑓 𝒖𝒖

𝜕𝜕𝒖𝒖 =𝐛𝐛 − 𝐊𝐊𝒖𝒖
• 𝑔𝑔 𝒖𝒖 = 𝐞𝐞 − 𝑹𝑹𝒖𝒖



On the model problem
𝑅𝑅𝐿𝐿𝐿𝐿 𝒖𝒖,𝝀𝝀 ≔ 𝒃𝒃 − 𝑲𝑲𝒖𝒖 −𝑹𝑹𝒕𝒕𝝀𝝀

𝒆𝒆 − 𝑹𝑹𝒖𝒖
𝐿𝐿𝐿𝐿𝐿𝐿 𝒖𝒖,𝝀𝝀 ≔ 𝑲𝑲 𝑹𝑹𝒕𝒕

𝑹𝑹 𝟎𝟎
Which gives the iteration

𝑲𝑲 𝑹𝑹𝒕𝒕

𝑹𝑹 𝟎𝟎
𝒐𝒐𝒖𝒖
𝒐𝒐𝝀𝝀 = 𝒃𝒃 − 𝑲𝑲𝒖𝒖 −𝑹𝑹𝒕𝒕𝝀𝝀

𝒆𝒆 − 𝑹𝑹𝒖𝒖
Which completed by

𝒖𝒖 = 𝒖𝒖 + 𝒐𝒐𝒖𝒖
Is completely equivalent to the original problem (just take the
initial guess as 0 for a proof)



Advantages & disadvantages of Lagrange
Multipliers method

• Very General & accurate
• Constraints are exactly enforced
It would be “the method of choice”, however:

• Increases the number of unknowns
• Problem is not any longer SPD, even if the original unconstrained

problem istypically plays badly with Iterative Solvers
• Zeros appear on the main diagonal
• User must take care not to repeat constraints. If the same condition is

asked twice linearly dependent constraints FAILURE
• STABILIZATION MAY BE NEEDED TO MAKE THE PROBLEM SOLVABLE 

(out of scope for now)



“penalty-based” alternatives

Penalty method – defines a new functional as
Ψ 𝒖𝒖 ≔ 𝑓𝑓 𝒖𝒖 − 𝒌𝒌

2 𝝀𝝀 𝒖𝒖 ⋅ 𝝀𝝀(𝒖𝒖)
Where “k” is a large number, called penalty parameter



Penalty method

For our model problem:

Ψ 𝒖𝒖 ≔ 𝑓𝑓 𝒖𝒖 −
𝒌𝒌
𝟐𝟐

𝒆𝒆 − 𝑹𝑹𝒖𝒖 ⋅ (𝒆𝒆 − 𝑹𝑹𝒖𝒖)

Hence, as 𝑅𝑅𝐿𝐿𝐿𝐿 𝒖𝒖 ≔ 𝜕𝜕Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝒖𝒖

We get:
RHS 𝒖𝒖 ≔ 𝒃𝒃 − 𝑲𝑲𝒖𝒖 − 𝒌𝒌 𝒆𝒆 − 𝑹𝑹𝒖𝒖 ⋅ (−𝑹𝑹)

And after minor manipulation
RHS 𝒖𝒖 ≔ 𝒃𝒃 − 𝑲𝑲𝒖𝒖 + 𝒌𝒌𝑹𝑹𝒕𝒕(𝒆𝒆 − 𝑹𝑹𝒖𝒖)



Penalty method

Applying NR method:
𝐿𝐿𝐿𝐿𝐿𝐿 𝒖𝒖 ≔ −𝜕𝜕𝑅𝑅𝑅𝑅𝑅𝑅 𝒖𝒖

𝜕𝜕 𝒖𝒖

We get
𝐿𝐿𝐿𝐿𝐿𝐿 𝒖𝒖 = 𝑲𝑲 + 𝒌𝒌𝑹𝑹𝒕𝒕𝑹𝑹



Penalty Method

penalty 1000

original matrix penalization kH^tH RHS
RHS with 
penalty

2 -1 0 1000 0 -1000 5 -995
-1 2 -1 0 0 0 0 0
0 -1 1 -1000 0 1000 0 1000

modified matrix inverse of modified matrix sol
1002 -1 -1000 1 1 1 5

-1 2 -1 1 1,50024988 1,00049975 5,49975012
-1000 -1 1001 1 1,00049975 1,0009995 5,99950025

In application to our problem we get
(assuming a zero initial guess)



Penalty method
• Easy to implement and pretty general
• Equivalent constraints can be enforced multiple times without any

problem.
• No additional unknowns
HOWEVER (on the bad side):
• Large “k” needed to enforce the constraints. (constraints “compete” 

with the stiffness matrix K)  LEADS TO ILL CONDITIONATED 
MATRICES

• Inaccurate (constraints can be violated)



Penalty in mixed form

It is interesting (we’ll see soon why) to observe that the penalty
method can be recast in a form similar to the lagrange multipliers.
To do so we can start with the expression
of the residual which corresponds to the penalty method

RHS 𝒖𝒖 ≔ 𝒃𝒃 − 𝑲𝑲𝒖𝒖 + 𝒌𝒌𝑹𝑹𝒕𝒕(𝒆𝒆 − 𝑹𝑹𝒖𝒖)
And introduce a new var 𝝀𝝀𝒌𝒌≔-𝒌𝒌 𝒆𝒆 − 𝑹𝑹𝒖𝒖



Penalty in mixed form
This leads to the definition of a “mixed” RHS

RHS 𝒖𝒖,𝝀𝝀𝒌𝒌 ≔
𝒃𝒃 − 𝑲𝑲𝒖𝒖 −𝑹𝑹𝒕𝒕𝝀𝝀𝒌𝒌

𝒆𝒆 − 𝑹𝑹𝒖𝒖 +
1
𝑘𝑘
𝝀𝝀𝒌𝒌

To which corresponds the NR iteration
𝑲𝑲 𝑹𝑹𝒕𝒕

𝑹𝑹 −
1
𝑘𝑘

𝒐𝒐𝒖𝒖
𝒐𝒐𝝀𝝀𝒌𝒌

=
𝒃𝒃 − 𝑲𝑲𝒖𝒖 −𝑹𝑹𝒕𝒕𝝀𝝀𝒌𝒌

𝒆𝒆 − 𝑹𝑹𝒖𝒖 +
1
𝑘𝑘
𝝀𝝀𝒌𝒌



Why the mixed form?

When written in mixed form, the system conditioning is less sensitive
to the value of the penalty parameter “k”

It may make sense to use it since it allows using a larger value of k



Augmented lagrangian method

It is a combination of “Lagrange” & “Penalty” methods

Ψ 𝒖𝒖 ≔ 𝑓𝑓 𝒖𝒖 −
𝒌𝒌
𝟐𝟐
𝝀𝝀 𝒖𝒖 ⋅ 𝝀𝝀 𝒖𝒖 + 𝝀𝝀𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 ⋅ 𝝀𝝀 𝒖𝒖

Where 𝝀𝝀𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 is modified at every iteration as
𝝀𝝀𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 = 𝝀𝝀𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 − 𝒌𝒌𝝀𝝀 𝒖𝒖𝒐𝒐𝒐𝒐𝒐𝒐



Augmented lagrangian method

For our model problem:

Ψ 𝒖𝒖 ≔ 𝑓𝑓 𝒖𝒖 −
𝒌𝒌
𝟐𝟐

𝒆𝒆 − 𝑹𝑹𝒖𝒖 ⋅ 𝒆𝒆 − 𝑹𝑹𝒖𝒖 + 𝝀𝝀𝑜𝑜𝑜𝑜𝑜𝑜 ⋅ 𝒆𝒆 − 𝑹𝑹𝒖𝒖

using 𝑅𝑅𝐿𝐿𝐿𝐿 𝒖𝒖 ≔ 𝜕𝜕Ψ 𝒖𝒖,𝝀𝝀
𝜕𝜕𝒖𝒖

we get:

RHS 𝒖𝒖 ≔ 𝒃𝒃 −𝑲𝑲𝒖𝒖 − 𝒌𝒌 𝒆𝒆 −𝑹𝑹𝒖𝒖 ⋅ −𝑹𝑹 −𝑹𝑹𝒕𝒕𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐

And after minor manipulation

RHS 𝒖𝒖 ≔ 𝒃𝒃 −𝑲𝑲𝒖𝒖 −𝑹𝑹𝒕𝒕 𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐 − 𝒌𝒌 𝒆𝒆 − 𝑹𝑹𝒖𝒖

Note that this is the value to 
be used in the next iteration!!
𝝀𝝀𝒌𝒌 = 𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐 − 𝒌𝒌 𝒆𝒆 − 𝑹𝑹𝒖𝒖



Augmented lagrangian in mixed form

Introducing an auxiliary variable 
𝝀𝝀𝒌𝒌 = 𝜆𝜆𝑜𝑜𝑜𝑜𝑜𝑜 − 𝒌𝒌 𝒆𝒆 − 𝑹𝑹𝒖𝒖

we arrive to the iterative scheme:
• STEP1 solve for until convergence

𝑲𝑲 𝑹𝑹𝒕𝒕

𝑹𝑹 −
1
𝑘𝑘

𝒐𝒐𝒖𝒖
𝒐𝒐𝝀𝝀𝒌𝒌

=
𝒃𝒃 − 𝑲𝑲𝒖𝒖 −𝑹𝑹𝒕𝒕(𝝀𝝀𝒌𝒌)

𝒆𝒆 − 𝑹𝑹𝒖𝒖 −
1
𝑘𝑘

(𝝀𝝀𝒌𝒌−𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐)

• STEP2
𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐 = 𝝀𝝀𝒌𝒌 = 𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐 − 𝒌𝒌 𝒆𝒆 − 𝑹𝑹𝒖𝒖

• STEP3 repeat 1 and 2 until convergence in 𝝀𝝀𝒐𝒐𝒐𝒐𝒐𝒐



Augmented lagrangian
• Easy to implement and pretty general
• Equivalent constraints can be enforced multiple times without any

problem.
• Large penalty not needed (at convergence)
HOWEVER (on the bad side):
• A linear problem is transformed into an iterative process
• If the iterative process is stopped before convergence constraint is not

respected exactly



Master-Slave elimination

An alternative approach is the so-called master-slave elimination. 

We recall that our model problem was
2 −1 0
−1 2 −1
0 −1 1

𝑢𝑢1
𝑢𝑢2
𝑢𝑢3

=
5
0
0

Subjected to the additional constraint:
𝑢𝑢3 = 𝑢𝑢1 + 1



Master-slave elimination

The idea is to build the constraint within the unknowns. In the specific
case, 𝑢𝑢3 can be expressed in terms of 𝑢𝑢1 and 𝑢𝑢2 as follows𝑢𝑢1

𝑢𝑢2
𝑢𝑢3

=
1 0
0 1
1 0

𝑢𝑢1
𝑢𝑢2 +

0
0
1

Or in short
𝒖𝒖 = 𝑻𝑻𝒖𝒖∗ + 𝒒𝒒



Master-slave elimination

We can now substitute 𝒖𝒖 = 𝑻𝑻𝒖𝒖∗ + 𝒒𝒒
In the original problem 𝑲𝑲𝒖𝒖 = 𝒃𝒃 to get

𝑲𝑲(𝑻𝑻𝒖𝒖∗ + 𝒒𝒒) = 𝒃𝒃
To make the problem solvable we then left multiply it by 𝑻𝑻𝒕𝒕

𝑻𝑻𝒕𝒕𝑲𝑲(𝑻𝑻𝒖𝒖∗ + 𝒒𝒒) = 𝑻𝑻𝒕𝒕𝒃𝒃
Or

𝑻𝑻𝒕𝒕𝑲𝑲𝑻𝑻𝒖𝒖∗ = 𝑻𝑻𝒕𝒕𝒃𝒃 − 𝑻𝑻𝒕𝒕𝑲𝑲𝒒𝒒



Master-slave elimination

1 0 1
0 1 0

2 −1 0
−1 2 −1
0 −1 1

1 0
0 1
1 0

𝑢𝑢1∗
𝑢𝑢2∗

= 1 0 1
0 1 0

5
0
0

− 1 0 1
0 1 0

2 −1 0
−1 2 −1
0 −1 1

0
0
1

Simplifying this gives
3 −2
−2 2

𝑢𝑢1∗
𝑢𝑢2∗

= 4
1 →

𝑢𝑢1∗
𝑢𝑢2∗

= 5
5.5

Once we recover the value of 𝑢𝑢3 we can immediately verify
that the solution is the same as before



Master-slave elimination
• Smaller, well conditioned systems
• Preserves symmetry and matrix properties
HOWEVER (on the bad side):
• Not very general (how to do for a generic nonlinear constraint??)
• Can be (very) difficult to implement
• User must be extremely careful in applying constraints exactly once
• User must identify variables to be eliminated
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