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Concept of Scalability

• Strong Scalability  Solve in less time a given problem by using more 
resources  Largely about implementation

• Weak Scalability Use more resources to solve, in the same time, a 
larger problem  Largely about algorithms



Number of iterations DEPENDS ON h

Let’s consider our Laplacian problem (really in the 2D and 3D cases).

The condition number can be proved to be 𝑂𝑂 1/ℎ2

That is, the problem becomes harder to solve when the element size
shrinks. 



Target toy problem
𝐴𝐴11 𝐴𝐴12
𝐴𝐴12𝑡𝑡 𝐴𝐴22

𝐴𝐴13 𝐴𝐴14 𝐴𝐴15
𝐴𝐴23 𝐴𝐴24 𝐴𝐴25

𝐴𝐴13𝑡𝑡 𝐴𝐴11𝑡𝑡

𝐴𝐴14𝑡𝑡 𝐴𝐴24𝑡𝑡

𝐴𝐴15𝑡𝑡 𝐴𝐴25𝑡𝑡

𝐴𝐴33 𝐴𝐴34 𝐴𝐴35
𝐴𝐴34𝑡𝑡 𝐴𝐴44 𝐴𝐴45
𝐴𝐴35𝑡𝑡 𝐴𝐴45𝑡𝑡 𝐴𝐴55

𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
𝑥𝑥4
𝑥𝑥5

=

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
𝑏𝑏4
𝑏𝑏5

Where we expect A to be SPD



Jacobi Preconditioner
𝑥𝑥1𝑖𝑖+1

𝑥𝑥2𝑖𝑖+1

𝑥𝑥3𝑖𝑖+1

𝑥𝑥4𝑖𝑖+1

𝑥𝑥5𝑖𝑖+1

=

𝑥𝑥1𝑖𝑖

𝑥𝑥2𝑖𝑖

𝑥𝑥3𝑖𝑖

𝑥𝑥4𝑖𝑖

𝑥𝑥5𝑖𝑖

+

𝐴𝐴11 0
0 𝐴𝐴22

0 0 0
0 0 0

0 0
0 0
0 0

𝐴𝐴33 0 0
0 𝐴𝐴44 0
0 0 𝐴𝐴55

−1 𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
𝑏𝑏4
𝑏𝑏5

−

𝐴𝐴11 𝐴𝐴12
𝐴𝐴12𝑡𝑡 𝐴𝐴22

𝐴𝐴13 𝐴𝐴14 𝐴𝐴15
𝐴𝐴23 𝐴𝐴24 𝐴𝐴25

𝐴𝐴13𝑡𝑡 𝐴𝐴11𝑡𝑡

𝐴𝐴14𝑡𝑡 𝐴𝐴24𝑡𝑡

𝐴𝐴15𝑡𝑡 𝐴𝐴25𝑡𝑡

𝐴𝐴33 𝐴𝐴34 𝐴𝐴35
𝐴𝐴34𝑡𝑡 𝐴𝐴44 𝐴𝐴45
𝐴𝐴35𝑡𝑡 𝐴𝐴45𝑡𝑡 𝐴𝐴55

𝑥𝑥1𝑖𝑖

𝑥𝑥2𝑖𝑖

𝑥𝑥3𝑖𝑖

𝑥𝑥4𝑖𝑖

𝑥𝑥5𝑖𝑖

NOTE: if we had 5 processors, we could update independently the 5 components of x

PERFECT PARALLELISM! (but as discussed, it is a weak preconditioner) 



Block Jacobi Preconditioner
𝑥𝑥1𝑖𝑖+1

𝑥𝑥2𝑖𝑖+1

𝑥𝑥3𝑖𝑖+1

𝑥𝑥4𝑖𝑖+1

𝑥𝑥5𝑖𝑖+1

=

𝑥𝑥1𝑖𝑖

𝑥𝑥2𝑖𝑖

𝑥𝑥3𝑖𝑖

𝑥𝑥4𝑖𝑖

𝑥𝑥5𝑖𝑖

+

𝐴𝐴11 𝐴𝐴12
𝐴𝐴12𝑡𝑡 𝐴𝐴22

0 0 0
0 0 0

0 0
0 0
0 0

𝐴𝐴33 𝐴𝐴34 0
𝐴𝐴34𝑡𝑡 𝐴𝐴44 0

0 0 𝐴𝐴55

−1
𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
𝑏𝑏4
𝑏𝑏5

−

𝐴𝐴11 𝐴𝐴12
𝐴𝐴12𝑡𝑡 𝐴𝐴22

𝐴𝐴13 𝐴𝐴14 𝐴𝐴15
𝐴𝐴23 𝐴𝐴24 𝐴𝐴25

𝐴𝐴13𝑡𝑡 𝐴𝐴11𝑡𝑡

𝐴𝐴14𝑡𝑡 𝐴𝐴24𝑡𝑡

𝐴𝐴15𝑡𝑡 𝐴𝐴25𝑡𝑡

𝐴𝐴33 𝐴𝐴34 𝐴𝐴35
𝐴𝐴34𝑡𝑡 𝐴𝐴44 𝐴𝐴45
𝐴𝐴35𝑡𝑡 𝐴𝐴45𝑡𝑡 𝐴𝐴55

𝑥𝑥1𝑖𝑖

𝑥𝑥2𝑖𝑖

𝑥𝑥3𝑖𝑖

𝑥𝑥4𝑖𝑖

𝑥𝑥5𝑖𝑖

If we had 3 processors, we could also decide to update each color independently on the owner processor.

This becomes a better preconditioner (closer to the exact inverse) as the number of subdomains diminishes.

HOWEVER: 
1 – cost of preconditioner is higher for fewer processors
2 – total number of iterations changes with the number of processors used (gets worst as we add parallelism)

NOT A SCALABLE PRECONDITIONER! (neither in weak nor strong sense)
3 – work imbalance may often become problematic 



Why Block preconditioner not (so) effective?

The number of iterations is governed by 𝑘𝑘 𝑃𝑃𝐴𝐴 = �𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

Block preconditioning improves the behaviour on eigenvectors “in the
middle” but not of the extreme values. 
This is so since:
• High frequency behaviour is still triggered by “jumps” across the

borders of the subdomains
• Global behaviour is not improved since the preconditioner does not

span the entire domain but only subparts of it.



How to control rate of convergence?

We need to design our preconditioner 𝑷𝑷 such that k 𝑷𝑷𝑨𝑨 ≪ 𝑘𝑘(𝑨𝑨)

• Either by making smaller 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 getting rid of high frequency modes
• Or by making larger 𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚 finding a way to solve for the “smooth 

frequencies”

And … we want to do that in parallel.



Deflation Solver – getting rid of low frequency
modes
Let’s imagine for a second we know the m lowest eigenvalues in the system
(although we don’t in real life!!).
We organize the eigenvectors as the column of a matrix 𝒁𝒁𝑵𝑵∗𝑴𝑴

Now if we want to solve the problem 𝑨𝑨𝑨𝑨 = 𝒃𝒃 we may look for a special case 
solution in the form 𝑨𝑨 = 𝐲𝐲 + 𝐙𝐙𝝀𝝀 (here 𝜆𝜆 is simply a symbol, nothing to do with the
eigenvalues of A)

We hence need to fulfil 𝑨𝑨𝐲𝐲 + 𝐀𝐀𝐙𝐙𝝀𝝀 = 𝒃𝒃 (which corresponds to making the residual 
orthogonal to the full basis of 𝑹𝑹𝑵𝑵
PROBLEM: we now have N+M unkowns instead of just N! 
IDEA: look also for the solution of 𝑨𝑨𝑨𝑨 = 𝒃𝒃 in the space spanned by the columns of 
𝒁𝒁 𝐙𝐙𝒕𝒕𝑨𝑨𝐲𝐲 + 𝐙𝐙𝒕𝒕𝐀𝐀𝐙𝐙𝝀𝝀 = 𝐙𝐙𝒕𝒕𝒃𝒃



Deflation Solver
Those two conditions together take the form

𝑨𝑨 𝑨𝑨𝒁𝒁
𝒁𝒁𝒕𝒕𝑨𝑨 𝒁𝒁𝒕𝒕𝑨𝑨𝒁𝒁

𝒚𝒚
𝝀𝝀 = 𝒃𝒃

𝒁𝒁𝒕𝒕𝒃𝒃 → 𝑨𝑨 𝑨𝑨𝒁𝒁
𝒁𝒁𝒕𝒕𝑨𝑨 𝑬𝑬

𝒚𝒚
𝝀𝝀 = 𝒃𝒃

𝒁𝒁𝒕𝒕𝒃𝒃
𝑬𝑬𝑴𝑴∗𝑴𝑴 ≔ 𝒁𝒁𝒕𝒕𝑨𝑨𝒁𝒁

Which is a singular system even if A was originally SPD

Next step is to express symbolically 𝝀𝝀 in terms of 𝒚𝒚 (static
condensation)

𝝀𝝀 = 𝐄𝐄−𝟏𝟏𝒁𝒁𝒕𝒕 𝒃𝒃 − 𝑨𝑨𝒚𝒚
Which substituted into the first gives

𝑨𝑨𝒚𝒚 + 𝑨𝑨𝒁𝒁𝐄𝐄−𝟏𝟏𝒁𝒁𝒕𝒕 𝒃𝒃 − 𝑨𝑨𝒚𝒚 = 𝐛𝐛
→ 𝑰𝑰 − 𝑨𝑨𝒁𝒁𝐄𝐄−𝟏𝟏𝒁𝒁𝒕𝒕 𝑨𝑨𝒚𝒚 = 𝑰𝑰 − 𝑨𝑨𝒁𝒁𝐄𝐄−𝟏𝟏𝒁𝒁𝒕𝒕 𝐛𝐛



Deflation Solver

The last equation can be written in terms of a projection P onto a subspace 𝑽𝑽𝒁𝒁 of 
𝐑𝐑𝐍𝐍 orthogonal to the eigenvectors contained in Z

𝑷𝑷(𝑨𝑨𝒚𝒚) = 𝑷𝑷 𝒃𝒃
With

𝑷𝑷 𝑨𝑨 ≔ 𝑰𝑰 − 𝑨𝑨𝒁𝒁𝐄𝐄−𝟏𝟏𝒁𝒁𝒕𝒕 𝑨𝑨
Note that It can be easily verified that 𝑷𝑷 𝑨𝑨 = 𝑷𝑷 𝑷𝑷 𝑨𝑨

The nice thing is that since we look for 𝐲𝐲 ∈ 𝑽𝑽𝒁𝒁 , y has no component onto the
lowest eigenmodes, which are thus effectively taken out from the system which
thus sees improved its conditioning. 
REMARK: The problem 𝑷𝑷(𝑨𝑨𝒚𝒚) = 𝑷𝑷 𝒃𝒃 is actually Rank deficient (deflated of m 
eigenvectors!), nevertheless we can solve it using CG (or PCG) since y is guaranteed
to be orthogonal to the Kernel



Important “Detail”

We have however an outstanding problem: we don’t know the lowest
eigenvalues

It turns out that it is good enough to use instead slowly varying
solutions, defined globally within the entire domain.

One option, called “constant deflation” is to take the columns of Z to 
be 1 in one of the subdomains, and zero on all the others.



For example for our “toy problem”

𝐴𝐴11 𝐴𝐴12
𝐴𝐴12𝑡𝑡 𝐴𝐴22

𝐴𝐴13 𝐴𝐴14 𝐴𝐴15
𝐴𝐴23 𝐴𝐴24 𝐴𝐴25

𝐴𝐴13𝑡𝑡 𝐴𝐴11𝑡𝑡

𝐴𝐴14𝑡𝑡 𝐴𝐴24𝑡𝑡

𝐴𝐴15𝑡𝑡 𝐴𝐴25𝑡𝑡

𝐴𝐴33 𝐴𝐴34 𝐴𝐴35
𝐴𝐴34𝑡𝑡 𝐴𝐴44 𝐴𝐴45
𝐴𝐴35𝑡𝑡 𝐴𝐴45𝑡𝑡 𝐴𝐴55

𝑥𝑥1𝑖𝑖

𝑥𝑥2𝑖𝑖

𝑥𝑥3𝑖𝑖

𝑥𝑥4𝑖𝑖

𝑥𝑥5𝑖𝑖

=

𝑏𝑏1
𝑏𝑏2
𝑏𝑏3
𝑏𝑏4
𝑏𝑏5

We would take out Z as

𝑍𝑍 ≔

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1



Visual Interpretation of Deflation

One more level of 
sofistication would be to 
allow deflated functions
to behave linearly.
Idea is the same but basis
a Little better

Simplest approach of 
having 1 constant per 
subdomain



Combining Constant deflation and block 
preconditioning
Long story short, the combination of block preconditioning and of 
constant deflation provides a solver that is scalable in both the weak
and strong sense.
PROBLEM  from our experience still slower than AMG

Some homebrew benchmarks available here
https://arxiv.org/pdf/1710.03940.pdf

Theoretical discussion in the references therein

https://arxiv.org/pdf/1710.03940.pdf


Schur complement solver 

Shaded áreas only depend on the value
In the center, so once that value is known
They can be factored independently

Value in 
common
between the
domains



PROBLEM: it may not be easy to decide 
where to divide

Reordering is
crucially needed to 
make apparent
structures in the
matrix!

(what is shown in 
the figure is
nothign else than a 
shuffling of the
índices of the
matrix in the
previous page)



Luckily FEM allows good partitions to 

Trick is to group data in disjoint volumes automatic tools exist to do 
it in parallel (METIS, SCOTCH, ZOLTAN…) 



Schur complement

If the situation is as before (and it typically IS in FEM, at least after a proper
reordering)
Than we can identify sparse blocks in the matrix and reorder it to achieve
something like

𝑨𝑨𝟏𝟏 𝟎𝟎 𝑨𝑨𝟏𝟏𝟏𝟏
𝟎𝟎 𝑨𝑨𝟐𝟐 𝑨𝑨𝟐𝟐𝟏𝟏
𝑨𝑨𝟏𝟏𝟏𝟏𝒕𝒕 𝑨𝑨𝟐𝟐𝟏𝟏𝒕𝒕 𝑨𝑨𝟏𝟏

𝑨𝑨𝟏𝟏
𝑨𝑨𝟐𝟐
𝑨𝑨𝟏𝟏

=
𝒃𝒃𝟏𝟏
𝒃𝒃𝟐𝟐
𝒃𝒃𝟏𝟏

The interesting point is that static condensation can be performed independently
for the colored components, that is IN PARALLEL

𝑨𝑨𝟏𝟏 − 𝑨𝑨𝟏𝟏𝟏𝟏𝒕𝒕 𝑨𝑨𝟏𝟏−𝟏𝟏𝑨𝑨𝟏𝟏𝟏𝟏 − 𝑨𝑨𝟐𝟐𝟏𝟏𝒕𝒕 𝑨𝑨𝟐𝟐−𝟏𝟏𝑨𝑨𝟐𝟐𝟏𝟏 𝑨𝑨s = 𝒃𝒃𝟏𝟏 − 𝑨𝑨𝟏𝟏𝟏𝟏𝒕𝒕 𝑨𝑨𝟏𝟏−𝟏𝟏𝒃𝒃𝟏𝟏 − 𝑨𝑨𝟐𝟐𝟏𝟏𝒕𝒕 𝑨𝑨𝟐𝟐−𝟏𝟏𝒃𝒃𝟐𝟐
This is the SCHUR COMPLEMENT of the original problem
If we were to solve it exactly than we would have a direct solver



IDEA:

Use Matrix-Free CG for the schur complement, instead of for the original problem

IMPORTANT RESULT: For a laplacian The condition number of the schur complement is
less dependent on the element size than for the original problem The approach is
more scalable than the original one. (although still not optimal!)

PROBLEM1: we need a preconditioner for the schur complement! Difficult, since we want
Matrix-free

PROBLEM2: solution of the Schur complement is “serial” in the sense that it implies a 
serialization point. Furthermore the size of the schur complement is proportional to the
área of intersections of the domains (instead of their volumen) which is still growing fast
with the number of domains limit to the scalability need for multilevel methods.



REMAINING OF THE COURSE:

Much deeper exploration of the idea, and exploration of techniques to 
achieve scalability (a concept that will also be further refined) while
avoiding serial bottlenecks.



SOME REFERENCES

https://www-users.cs.umn.edu/~saad/PS/iter4.pdf

https://www-users.cs.umn.edu/%7Esaad/PS/iter4.pdf
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