Problem 1. Given the function $f(x) := x^3 + 2x^2 + 10x - 20$, four iterations of the Newton method will be applied to find the root of f(x), using $\sqrt[3]{20} \approx 2.714$ as starting guess.

At the root value x_{root} , $f(x_{root}) = 0$. The linear approximation to $f(x_{root})$ from any value x_i reads as $f(x_{root}) = 0 = f(x_i) + f'(x_i)\Delta x \rightarrow \Delta x = -(f(x_i)/f'(x_i))$. Therefore, the generation of a value x_{new} closer to x_{root} than x_i is comes from $x_{new} = x_i + \Delta x$.

The corresponding flow diagram is set out below:

$$x_{0}, f(x), f'(x) \rightarrow x_{i} = x_{0}$$

$$\Delta x = -(f(x_{i})/f'(x_{i}))$$

$$x_{new} = x_{i} + \Delta x$$

$$f(x_{new}) \leq \text{tol.} \quad x_{i} = x_{new}$$

$$x_{root} = x_{new}$$

A chart showing the implementation results and a plot of the convergence - (that is, $f(x_i)$ versus iteration *i*) is set out below. The approximated value for x_{root} can be taken as 1.37.

i	x _i	f(x _i)	f'(x _i)	Δx
0	2,714418	41,8803	42,96186	-0,97483
1	1,739592	8,712611	26,03692	-0,33463
2	1,404967	0,770847	21,54167	-0,03578
3	1,369183	0,007912	21,10072	-0,00037
4	1,368808	8,59E-07		

