Problem 1. Given the function $f(x):=x^{3}+2 x^{2}+10 x-20$, four iterations of the Newton method will be applied to find the root of $f(x)$, using $\sqrt[3]{20} \approx 2.714$ as starting guess.
At the root value $x_{\text {root }}, f\left(x_{\text {root }}\right)=0$. The linear approximation to $f\left(x_{\text {root }}\right)$ from any value x_{i} reads as $f\left(x_{\text {root }}\right)=0=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) \Delta x \rightarrow \Delta x=-\left(f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)\right)$. Therefore, the generation of a value $x_{\text {new }}$ closer to $x_{\text {root }}$ than x_{i} is comes from $x_{\text {new }}=x_{i}+\Delta x$.

The corresponding flow diagram is set out below:

A chart showing the implementation results and a plot of the convergence - (that is, $f\left(x_{i}\right)$ versus iteration i) is set out below. The approximated value for $x_{\text {root }}$ can be taken as 1.37.

\mathbf{i}	x_{i}	$f\left(x_{i}\right)$	$f^{\prime}\left(x_{i}\right)$	Δx
0	2,714418	41,8803	42,96186	$-0,97483$
1	1,739592	8,712611	26,03692	$-0,33463$
2	1,404967	0,770847	21,54167	$-0,03578$
3	1,369183	0,007912	21,10072	$-0,00037$
4	1,368808	$8,59 \mathrm{E}-07$		

