Numerical methods for PDE Exercises: Basics
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Problem 1. Given the function f(x) := x3 + 2x? + 10x — 20, four iterations of the Newton method

will be applied to find the root of f(x), using 320 ~ 2.714 as starting guess.

At the root value X0, f(x) = 0. The

linear approxhnation to f(xroot) from any .\'” s /(\ ) ./" (-\- ) —’1 A= .\.(1 ?
value x; reads as f(xro0r) = 0 = f(x;) + Av=—{/ ("\'i j [l ))‘
f’(xi)Ax > Ax = —(f(xi)/f,(xi))' .

X =x +Ax

Therefore, the generation of a value x,,,,,
closer to X,-o,¢ than x; is comes

from x,.,, = x; + Ax.

The corresponding flow diagram is set out

to the right:

A chart showing the implementation results and a plot of the convergence —that is, f(x;) versus

iteration i is set out next. The approximated value for x,.,,, can be taken a 1.37.

i X, f(x) f'(x;) AX

2,714418| 41,8803 | 42,96186 | -0,97483
1,739592 | 8,712611 | 26,03692 | -0,33463
1,404967 | 0,770847 | 21,54167 | -0,03578
1,369183 | 0,007912 | 21,10072 | -0,00037
1,368808 | 8,59E-07

f(x)
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Iteration i

Problem 5. The required order g of the quadrature is 3, so the number of integration points, in
principle, depends on the specific scheme one intends applying:
» Newton-Cotes formulae with an even number of terms n. Here ¢ = n + 1: but this is just the
same number as the degrees of freedom in this method, which corresponds to the number of
integration points used {x;}{. Hence one needs three integration points.

Newton-Cotes formulae with an odd number of terms n. Here ¢ = n; however, as the number

Y

of degrees of freedom is equal to n + 1 then one needs four integration points.



» Gauss quadrature method. Here the number of degrees of freedom (made up by both
integration points and weights) is given by 2n + 2, whereas the quadrature order is ¢ = 2n +
1. Therefore, if g = 3 then we have that 4 = 2n + 2. But the number of integration-points
is half the degree of freedom, or n + 1. Thus, dividing by two the previous equation we have

2 =n + 1 and conclude that the method requires two integration points.
Problem 6. a) In the Gaussian quadrature method the polynomial exactly integrated is of order 2n +
1. Hence, given n + 1 integrafion points, said order is given by 2(n + 1) — 1. In other words, the
polynomial exactly integrated is of order equal to twice the number of integration points minus one.
b) For n = 2 then the order of the polynomial exactly integrated if of order up to and including 2n +

1 = 5. Therefore integrals ii and iii can be integrated exactly.
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