
Coupled Problems

Homeworks

1 Transmission conditions

1. The deflection v(x) of an Euler-Bernouilli beam is governed by the differential equation

EI
d4v

dx4
= f

where EI is a mechanical property of the beam section and the beam material and f is the
distributed load. Assuming for example that the beam is clamped at x = 0 and x = L, the
Principle of Virtual Work (PTV) states that the solution v(x) satisfies

EI

∫ L

0

d2δv

dx2
d2v

dx2
=

∫ L

0
δvf

for all δv such that δv(0) = δv(L) = 0, dδv
dx (0) = dδv

dx (L) = 0.

(a) Postulate the space of functions where both v and δv must belong. Justify the answer.

(b) If [0, L] = [0, P ] ∪ (P,L], obtain the transmission conditions at P implied by regularity
requirements.

(c) Obtain the transmission conditions at P that follow by imposing in the PTV that the integral
is additive.

2. The Maxwell problem consists in finding a vector field u : Ω −→ R3 such that

ν∇×∇× u = f in Ω

∇ · u = 0 in Ω

n× u = 0 on ∂Ω

where ν > 0, f is a divergence free force field and n the unit external normal. Equation∇·u = 0
is in fact redundant.

(a) Write a variational statement of the problem. Postulate the space of functions where u must
belong. Justify the answer.

(b) If Γ is a surface that intersects Ω, obtain the transmission conditions across Γ implied by
regularity requirements.

(c) Obtain the transmission conditions across Γ that follow by imposing in the variational form
of the problem that the integral is additive.
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3. The Navier equations for an elastic material can be written in three different ways:

−2µ∇ · (ε(u))− λ∇(∇ · u) = ρb

−µ∆u− (λ+ µ)∇(∇ · u) = ρb

µ∇× (∇× u)− (λ+ 2µ)∇(∇ · u) = ρb

where u is the displacement field, ε(u) the symmetric part of∇u, λ and µ the Lamé coefficients,
ρ the density of the material and b the body forces. Let us assume that u = 0 on ∂Ω.

(a) Write down the variational form of the previous equations in the appropriate functional
spaces.

(b) If Γ is a surface that intersects Ω, obtain the transmission conditions across Γ that follow by
imposing in the variational form of the problem that the integral is additive.

2 Domain decomposition methods

1. Consider Problem 1 of Section 1. Let [0, L] = [0, L1] ∪ [L2, L], with L2 < L1.

(a) Write down an iteration-by-subdomain scheme based on a Schwarz additive domain de-
composition method.

(b) Obtain the matrix version of the previous scheme once space has been discretized using
finite elements.

2. Consider Problem 2 of Section 1. Let Γ be a surface that intersects Ω.

(a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Neumann coupling.

(b) Obtain the expression of the Steklov-Poincaré operator of the problem.

(c) Obtain the matrix version of the previous scheme once space has been discretized using
finite elements.

3. Consider the problem of finding u : Ω −→ R such that

−k∆u = f in Ω

u = 0 on ∂Ω

where k > 0. Let Γ be a surface crossing Ω.

(a) Write down an iteration-by-subdomain scheme based on the Dirichlet-Robin coupling.

(b) Obtain the matrix version of the previous scheme once space has been discretized using
finite elements.

(c) Obtain the Schur complement as discrete version of the Steklov-Poincaré operator.

(d) Identify the preconditioner for the Schur complement equation arising from the iterative
scheme of section (a).
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3 Coupling of heterogeneous problems

1. Consider the beam described in Problem 1 of Section 1. Apart from being clamped at x = 0 and
x = L, the beam is supported on an elastic wall that occupies the square [0, L]× [−L, 0], where
y = 0 corresponds to the beam axis. The wall is clamped everywhere except on the upper wall,
where the beam is. The wall displacements in the x- and y-directions are u and v, respectively,
and the elastic properties E (Young modulus) and ν (Poisson’s coefficient). No loads are applied
on the wall, except for those coming from the beam.

(a) Write down the equations in the wall assuming a plane stress behavior.
(b) Write down the equations for the beam modified because of the presence of the wall.
(c) Obtain the adequate transmission conditions for v and the normal component of the traction

on the wall at y = 0.
(d) Suggest transmission conditions for u and the tangent component of the traction on the wall

at y = 0. Discuss the implications if this component is not assumed to be zero.

2. Let SD and SS be the Dirichlet-to-Neumann operators for the Darcy and the Stokes problems,
respectively (see the class notes, chapter 3). The Steklov-Poincaré equation can be written as

SS(λ) = SD(λ),

where λ is the normal velocity on Γ, the interface between the Darcy and the Stokes regions.

(a) Obtain the discrete version of the previous equation when space is discretized using finite
elements. Relate the resulting matrices to those arising from the discretization of the Darcy
and the Stokes problems separately.

(b) Write down the matrix form of a Dirichlet-Neumann iteration-by-subdomain using the ma-
trices of the Darcy and the Stokes problems.

(c) Identify the Richardson iteration for the algebraic problem in (a) resulting from (b).

4 Monolithic and partitioned schemes in time

Consider the one-dimensional, transient, heat transfer equation:

∂u

∂t
− κ∂

2u

∂x2
= f in [0,1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

1. Discretize it using the finite element method (linear elements, element size h) for the discretiza-
tion in space, and a BDF1 scheme for the discretization in time. Write down the weak form of
the problem and the resulting matrix form of the problem, including the corresponding boundary
integrals if necessary. Consider κ = 1, f = 1, δt = 1.

2. Consider a domain decomposition approach for the previous problem. The left subdomain is
composed of 2 elements (h = 0.2), while the right subdomain is composed of 3 elements (h =
0.2). Show that, if a monolithic approach is adopted, no boundary integrals are required at the
interface. From now on, we denote the values at the nodes of the mesh as u0, u1, u2, u3, u4, u5.
The interface is at u2.
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3. Obtain the algebraic form of the Dirichlet-to-Neumann operator (Steklov-Poincaré’s operator)
for the left subdomain, departing from given values of uni at time step n, and an interface value
un+1
2 .

4. Obtain the algebraic form of the Neumann-to-Dirichlet operator for the right subdomain, de-
parting from given values of uni and an interface value for the fluxes φn+1 = κ∂xu

n+1 at the
coordinate of node 2.

5. Write down the iterative algorithm for a staggered approach applying Dirichlet boundary condi-
tions at the interface to the left subdomain and Neumann boundary conditions at the interface for
the right subdomain.

6. Do the same for a substitution and an iteration by subdomains scheme.

7. Rewrite the algebraic system associated to the left subdomain (Dirichlet boundary conditions
at the interface), using Nitsche’s method for applying the boundary conditions. How does the
condition number of the resulting system of equations vary with the penalty parameter α?

5 Operator splitting techniques

Consider the one dimensional, transient, convection-diffusion equation:

∂u

∂t
− κ∂

2u

∂x2
+ ax

∂u

∂x
= f in [0,1]

u(x = 0, t) = 0

u(x = 1, t) = 0

u(x, t = 0) = 0

with κ = 1, ax = 1, f = 1.

1. Discretize it in space using finite elements (2 elements) and in time (finite differences, BDF1).
Solve the first step of the problem, writing the solution as a function of the time step size δt.

2. Solve the same time step by using a first order operator splitting technique.

3. Evaluate the error of the splitting approach with respect to the monolithic approach. Plot the
splitting error vs. the time step size for δt = 1, δt = 0.5, δt = 0.25. Comment on the results.

6 Fractional step methods

Consider the fractional step approach for the incompressible Navier-Stokes equations (Yosida scheme):

M
1

δt

(
Ûn+1 − Un

)
+KÛn+1 = f −GP̃n+1

DM−1GPn+1 =
1

δt
DÛn+1 −DM−1GP̃n+1

M
1

δt

(
Un+1 − Ûn+1

)
+ αK

(
Un+1 − Ûn+1

)
+G

(
Pn+1 − P̃n+1

)
= 0

1. Which is the optimal value for the α parameter?

2. What is the source of error of the scheme?
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7 ALE formulations

1. Given the spatial description of a property

γ(x, y, z, t) =
[
2x, yet, z

]
the equations of movement:

x = Xet

y = Y + et − 1

z = Z

and the equations of the movement of the mesh:

xm = X + αt

ym = Y − βt
zm = Z

(a) Obtain the description of the property in terms of the ALE coordinates (X ,Y,Z).

(b) Compute the velocity of the particles and the mesh velocity.

(c) Compute the ALE description of the material temporal derivative of γ.

2. Write down the ALE form of the incompressible Navier-Stokes equations. Where (in time and
space) is each of the terms of the equation evaluated? How are temporal derivatives computed?

3. Do a bibliographical research on existing methods for the definition of the mesh movement in
ALE formulations (Poisson problem, Elasticity problem, etc.). Describe the main advantages of
each of these methods.

8 Fluid-Structure Interaction

1. Describe the added mass effect problem for fluid structure interaction problems. When does it
appear, what kind of problems suffer from it? What are the main methods for dealing with it?

2. Consider the iteration by subdomain scheme for the heat transfer problem described in problem
1. Apply 2 iterations of the AITKEN relaxation scheme to it.

3. Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h = 1/4)
approximation of the heat transfer equation in problem 1. Enforce the Dirichlet boundary condi-
tions in x = 0 and x = 1 by using Lagrange multipliers. What is the form of the discrete system?
What is the condition number of the resulting matrix?

4. Consider the monolithic (1 domain), transient (BDF1), finite element (linear elements, h = 1/4)
approximation of the heat transfer equation in problem 1. Suppose that a level set function (ψ = 0
at x = 0.4) divides the domain into a high thermal conductivity (κ = 100) subdomain (x ∈
[0, 0.4]) and a low thermal conductivity (κ = 1) subdomain (x ∈ (0.4, 1]). Build the system
matrix for this problem. Take into account the need for subintegrating the element cut by the
level set function.
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