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Coupling In Time II 2 

• Let us consider the incompressible Navier-Stokes equations : 
𝜕𝑡𝒖 + 𝒖 · 𝛻𝐮 − 𝜈𝜈𝒖 + 𝛻𝛻 = 𝒇 

𝛻 · 𝒖 = 0 
with boundary conditions: 

𝒖 = 𝒖�          on Γ𝐷 
𝒏 · 𝝈 = 𝒕           on Γ𝑁       

and initial conditions: 
𝒖 𝒙, 0 = 𝒖0 

• Pressure is determined up to an arbitrary additive constant. It is the Lagrange 
multiplier for the incompressibility constraint. 

 
• The problem when solving these equations is that pressure and velocity are 

coupled.  
 
• They cannot be solved independently, thus the computational cost is high. 

 
• Stabilization methods are required, due to both the convective term and the 

LBB inf-sup condition which velocity-pressure interpolation spaces must satisfy 
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The objective is to decouple velocity and pressure in order to reduce 
computational cost. 
Classical fractional step methods consist of splitting these equations in two steps.  
 
Suppose that we are using a backward Euler time integration scheme. The first step 
is: find an intermediate velocity  𝒖�𝑛+1 such that: 
 

𝒖�𝑛+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖�𝑛+1 + 𝒖�𝑛+1 ⋅ 𝛁𝒖�𝑛+1 = 𝒇𝑛+1 
𝒖�𝑛+1 = 𝒖�          on Γ𝐷 

 
• Note that we have eliminated the pressure unknown and the continuity 

equation 
 
• This is simply an advection-diffusion equation. Plus, if usual boundary 

conditions are imposed, velocity unknowns are decoupled.  
 
• The intermediate velocity is not satisfying the incompressibility constraint 
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The second step consists in finding a end of step velocity 𝒖𝑛+1 ∈ 𝑱0 and a pressure 
𝑝 ∈ 𝐻1 such that: 

𝒖𝑛+1 − 𝒖�𝑛+1

𝛿𝛿 + 𝛻𝑝𝑛+1 = 0, 
𝛻 ⋅ 𝒖𝑛+1 = 0, 
𝒏 ⋅ 𝒖𝑛+1 = 𝒏 ⋅ 𝒖�          on Γ𝐷 

 
We note that this is equivalent to projecting  𝒖�𝑛+1 onto  𝑱0 the space of weakly 
divergence free functions: 

𝑱0 ≔ 𝒖 ∈ 𝑳2 Ω   𝛻 ⋅ 𝒖 = 0}  
 

Note that, due to the Helmholtz decomposition, for a sufficiently smooth 𝒖�𝑛+1, we 
can decompose 𝒖�𝑛+1 into: 

𝒖�𝑛+1 = 𝒖�𝛻×
𝑛+1 + 𝒖�𝛻𝑛+1 

where: 
𝛻 ⋅ 𝒖�𝛻×

𝑛+1 = 0 
𝒖�𝛻𝑛+1 = 𝛻𝑝 ⋅ 𝛿𝛿 
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An error related to the pressure boundary conditions has been introduced! 
 
If we take into account that: 

𝒖�𝑛+1 = 𝒖�                   on Γ𝐷 
𝒏 ⋅ 𝒖𝑛+1 = 𝒏 ⋅ 𝒖�             on Γ𝐷 

Then, due to:  
𝒖𝑛+1 − 𝒖�𝑛+1

𝛿𝛿 + 𝛻𝑝𝑛+1 = 0, 
 
the pressure field is satisfying an artificial boundary condition:  

𝒏 ⋅ 𝛻𝑝𝑛+1 �
Γ

= 0. 
 
This introduces an spurious pressure boundary layer of width 𝓞 𝜈Δ𝑡 
 
On the other hand, the method is stable for equal order interpolations if Δ𝑡 > 𝐶ℎ2 
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However, velocity and pressure still have not been decoupled. 
 
In order to uncouple them, we take the divergence of : 
 

𝒖𝑛+1 − 𝒖�𝑛+1

𝛿𝛿 + 𝛻𝑝𝑛+1 = 0, 
 
which leads us to: 

Δ𝑝𝑛+1 =
∇ ⋅ 𝒖�𝑛+1

𝛿𝛿 , 

𝒏 ⋅ 𝛻𝑝𝑛+1 �
Γ

= 0. 
 
This is called the Pressure Poisson Equation. 
 
Once the pressure is calculated, we recover the end of step velocity from the first 
equation. 
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Improving the splitting error 
Let us consider the fractional step equations: 

𝒖�𝑛+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖�𝑛+1 + 𝒖�𝑛+1 ⋅ 𝛁𝒖�𝑛+1 = 𝒇𝑛+1 
𝒖𝑛+1 − 𝒖�𝑛+1

𝛿𝛿 + 𝛻𝑝𝑛+1 = 0, 
𝛻 ⋅ 𝒖𝑛+1 = 0, 

From the second equation we can see that: 
𝓞 𝒖𝑛+1 − 𝒖�𝑛+1 ≈ 𝛿𝛿𝛿 𝑝𝑛+1  

An improvement in the splitting error:  
𝒖�𝑛+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖�𝑛+1 + 𝒖�𝑛+1 ⋅ 𝛁𝒖�𝑛+1 + 𝛁𝒑𝒏 = 𝒇𝑛+1 
𝒖𝑛+1 − 𝒖�𝑛+1

𝛿𝛿 + (𝛻𝑝𝑛+1 − 𝛁𝒑𝒏) = 0, 
𝛻 ⋅ 𝒖𝑛+1 = 0, 

Now the splitting error is: 
𝑂 𝒖𝑛+1 − 𝒖�𝑛+1 ≈ 𝛿𝛿𝛿 𝑝𝑛+1 − 𝑝𝑛 ≈ 𝜹𝒕𝟐 𝓞 𝒑𝒏+𝟏  

Stability for equal-order interpolations is also enhanced, stable for 𝛿𝛿 > 𝐶𝐶 
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Predictor-corrector schemes 
 
Departing from the 2nd order fractional step method, we define an iterative 
procedure to converge to the monolithic  scheme: 
 
While convergence is not reached, iterate: 
Step 1: 

𝒖�𝑛+1,𝑖+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖�𝑛+1,𝑖+1 + 𝒖𝑛+1,𝑖 ⋅ 𝛻𝒖�𝑛+1,𝑖+1 + 𝛻𝑝𝑛+1,𝑖 = 𝒇𝑛+1 

Step 2: 

Δ𝑝𝑛+1,𝑖+1 =
∇ ⋅ 𝒖�𝑛+1,𝑖+1

𝛿𝛿 , 
Step 3: 

𝒖𝑛+1,𝑖+1 − 𝒖�𝑛+1,𝑖+1

𝛿𝛿 + 𝛻𝑝𝑛+1,𝑖+1 = 0 
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Momentum-pressure Poisson equation methods 
Instead of solving the continuity equation, we replace it by a Pressure Poisson 
Equation: 

𝜕𝑡𝒖 + 𝒖 ⋅ 𝛁𝛁 − 𝜈Δ𝒖 + 𝛻𝑝 = 𝒇, 
Δ𝑝 = 𝛻 · 𝒇 + 𝜈Δ𝒖 − 𝒖 · 𝛁𝛁 . 

 
Note that the second equation is obtained by taking the divergence of the first one 
and taking into account that: 

𝛻 · 𝜕𝑡𝒖 = 𝜕𝑡𝛻𝒖 = 0. 
After discretizing in time we can write: 

𝒖𝑛+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖𝑛+1 + 𝒖𝑛+1 ⋅ 𝛁𝒖𝑛+1 + 𝛻𝑝∗ = 𝒇𝑛+1
 
, 

Δ𝑝𝑛+1 = 𝛻 · 𝒇𝑛+1 + 𝜈Δ𝒖𝑛+1 − 𝒖𝑛+1 · 𝛁𝒖𝑛+1 . 
 
Where 𝑝∗ is a high order extrapolation of 𝑝𝑛+1. For instance: 

𝑝∗ = 2𝑝𝑛 − 𝑝𝑛−1 
 
But the incompressibility constraint is relaxed! 
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Velocity correction schemes 
 
We can improve the fulfillment of the incompressibility constraints by extrapolating 
the velocity instead of the pressure (and solving first for the PPE): 
 

Δ𝑝𝑛+1 = 𝛻 · 𝒇𝑛+1 + 𝜈Δ𝒖∗ − 𝒖∗ · 𝛁𝒖∗ . 
𝒖𝑛+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖𝑛+1 + 𝒖𝑛+1 ⋅ 𝛁𝒖𝑛+1 + 𝛻𝑝𝑛+1 = 𝒇𝑛+1
 
, 

 
The problem of this type of approximation is that it requires a higher regularity for 
the interpolation space of 𝒖 : we require 𝒖 ∈ 𝐻2. 
 
This is so because the finite element weak form of the PPE reads: 
 

(𝛻𝑞ℎ,𝛻𝑝ℎ𝑛+1) = (𝛻𝑞ℎ,𝒇𝑛+1 + 𝜈Δ𝒖ℎ∗ − 𝒖ℎ∗ · 𝛁𝒖ℎ∗ ). 
 
 This issue can be circumvented by adopting an algebraic approach  
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Algebraic approach 
 
Let us consider the discrete weak form of the incompressible Navier-Stokes equations 
(stabilization is required!): 
 

𝒗ℎ,
𝒖ℎ𝑛+1

𝛿𝑡
+ 𝒗ℎ,𝒖ℎ𝑛+1 ⋅ 𝛻𝒖ℎ𝑛+1 +  𝜈 𝛻𝑣ℎ,𝛻𝒖ℎ𝑛+1 − 𝛻 · 𝒗ℎ, 𝑝ℎ𝑛+1

= 𝒗ℎ,𝒇 + 𝒗ℎ,
𝒖𝑛

𝛿𝑡
, 

𝑞ℎ,𝛻 ⋅ 𝒖ℎ𝑛+1 = 0. 
 
We can write it in an algebraic form: 

𝑴
1
𝛿𝛿 𝑼

𝑛+1 + 𝑲 𝑼𝑛+1 𝑼𝑛+1 + 𝑮𝑷𝑛+1 = 𝑭𝑛+1 −𝑴
1
𝛿𝛿 𝑼

𝑛 
𝑫𝑼𝑛+1 = 0, 
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Algebraic approach 
 
We multiply the first equation by 𝑫𝑴−1, and we replace it by the continuity equation: 

𝑴
1
𝛿𝛿 𝑼

𝑛+1 + 𝑲 𝑼𝑛+1 𝑼𝑛+1 + 𝑮𝑷𝑛+1 = 𝑭𝑛+1 −𝑴
1
𝛿𝛿
𝑼𝑛 

𝑫𝑴−𝟏𝑮𝑷𝑛+𝟏 = 𝑫𝑴−𝟏𝑭𝑛+𝟏 − 𝑫𝑴−𝟏𝑲 𝑼𝑛+𝟏 𝑼𝑛+𝟏 + 𝑫𝑼𝑛, 
 
This is exactly equivalent to the monolithic formulation, and there are no regularity 
requirements. 
 
Plus, 𝑫𝑴−𝟏𝑮 is a discrete version of the Laplacian operator. We can replace it by the 
laplacian operator 

𝑫𝑴−𝟏𝑮 ≈ 𝑳 
but then we introduce the boundary conditions issue. A better approximation is: 
 

𝑫𝑴−𝟏𝑮𝑷𝑛+1 = 𝑳𝑷𝑛+1 + (𝑫𝑴−𝟏𝑮 − 𝑳)𝑷𝑛+1 ≈ 𝑳𝑷𝑛+1 + 𝑫𝑴−𝟏𝑮 − 𝑳 𝑷∗ 
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Velocity projection methods 
 
Using the previous approximation for 𝑫𝑴−𝟏𝑮 , and introducing an approximation for the 
velocity at 𝑛 + 1 we obtain the following velocity correction method: 
 
Step 1. Solve for the pressure: 
 

𝑳𝑷𝑛+1 = 𝑫𝑴−𝟏𝑭𝑛+𝟏 − 𝑫𝑴−𝟏𝑲 𝑼∗ 𝑼∗ + 𝑫𝑼𝑛 − 𝑫𝑴−𝟏𝑮 − 𝑳 𝑷∗ 
 
Step 2. Solve for the velocity: 

 

𝑴
1
𝛿𝛿 𝑼

𝑛+1 + 𝑲 𝑼𝑛+1 𝑼𝑛+1 = 𝑭𝑛+1 −𝑴
1
𝛿𝛿 𝑼

𝑛 − 𝑮𝑷𝑛+1 
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Predictor corrector schemes 
 
We can define an iterative procedure on the previous velocity correction scheme: 
 
While not converged, iterate:  
Step 1. Solve for the pressure: 
 
𝑳𝑷𝑛+1,𝑖+1 = 𝑫𝑴−𝟏𝑭𝑛+𝟏 − 𝑫𝑴−𝟏𝑲 𝑼𝑛+1,𝑖 𝑼𝑛+1,𝑖 + 𝑫𝑼𝑛 − 𝑫𝑴−𝟏𝑮 − 𝑳 𝑷𝑛+1,𝑖 

 
Step 2. Solve for the velocity: 

 

𝑴
1
𝛿𝛿 𝑼

𝑛+1,𝑖+1 + 𝑲 𝑼𝑛+1,𝑖+1 𝑼𝑛+1,𝑖+1 = 𝑭𝑛+1 −𝑴
1
𝛿𝛿 𝑼

𝑛 − 𝑮𝑷𝑛+1,𝑖+1 
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Solving non-linear systems of equations 
 
Let us suppose that we have a non-linear system of the type: 

𝑲 𝑼 𝑼 = 𝑭 
where 𝑲(𝑼) is linear on 𝑼. The LHS is non-linear, it cannot be solved straight-forwardly. 
 
Picard iterative scheme (fixed point iteration): 

𝑲 𝑼𝑖 𝑼𝑖+1 = 𝑭 
Newton iterative scheme:  

𝑼𝑖+1 = 𝑼𝑖 + Δ𝑼𝑖+1 
𝑲 𝑼𝑖 + Δ𝑼𝑖+1 𝑼𝑖 + Δ𝑼𝑖+1 = 𝑭 
𝑲 𝑼𝑖 𝑼𝑖 + 𝑲 𝑼𝑖 + Δ𝑼𝑖+1 𝑼𝑖 + 𝑲 𝑼𝑖 𝑼𝑖 + Δ𝑼𝑖+1 + 𝑲 Δ𝑼𝑖+1 Δ𝑼𝑖+1 = 𝑭 

 
The final system is: 

𝑲 𝑼𝑖+1 𝑼𝑖 + 𝑲 𝑼𝑖 𝑼𝑖+1 = 𝑭 − 𝑲 𝑼𝑖 𝑼𝑖  
 
Relaxation and under-relaxation are also possible:   𝑼𝑖+1= 𝑼𝑖+𝑤Δ𝑼𝑖+1    𝑤 ∈ (0,∞)          
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION 

Operator splitting techniques 
 
The idea is to decompose the system of PDEs into simpler problems. This allows to treat 
each problem with specific algorithms. 
 
The splitting can be applied at the continuous (Differential Splitting) or at the discretized 
(Algebraic Splitting) levels. 
 
• Operator splitting allows to treat some each of the split operators by using different 

temporal integrators. Particularly, explicit or implicit methods can be used. 
• We can use different time steps for different problems. This option is particularly 

interesting if operators have very different time step restrictions for explicit schemes. 
• Discretization in space can also be different for the various subproblems (finite 

elements, volumes, differences). 
• Splitting errors depend on the time step size linearly, quadratically… 
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION 

Operator splitting techniques 
 
Let us consider the convection-diffusion equation: 
 

𝜕𝑡𝑢 + 𝒂 ⋅ 𝛻𝛻 − 𝜈𝜈𝜈 = 𝑓        in 0, T         𝑢0 = 0 
 
We define  

𝓛 = 𝓛𝒂 + 𝓛𝜈  
𝓛𝒂𝑢 = 𝒂 ⋅ 𝛻𝛻 
𝓛𝜈𝑢 = −𝜈𝜈𝜈 

This yields: 
𝜕𝑡𝑢 + 𝓛𝒂𝑢 + 𝓛𝜈𝑢 = 𝑓 

  
We introduce the splitting by defining intermediate variables 𝑢𝑎 and 𝑢𝜈. 
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION 

Operator splitting techniques 
 
In order to advance in time, we first solve for 𝑢𝑎: 
 

𝑢𝑎 𝑡𝑛 = 𝑢𝑛 
𝜕𝑡𝑢𝑎 + 𝓛𝒂𝑢𝑎 = 0 

 
Secondly we solve for 𝑢𝜈,  
but the initial condition is 𝑢𝑎 𝑡𝑛+1 : 
 

𝑢𝜈 𝑡𝑛 = 𝑢𝑎 𝑡𝑛+1  
𝜕𝑡𝑢𝜈 + 𝓛𝝂𝑢𝜈 = 𝑓 

 
Finally: 

𝑢𝑛+1 = 𝑢𝜈(𝑡𝑛+1) 
 
 

𝑢𝑛 

𝑢𝑎𝑛+1 

𝑢𝑎𝑛+1 

𝑢𝑛+1 

𝓛𝝂 𝓛𝒂 

𝑡𝑛+1 

𝑡𝑛 
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION 

Operator splitting techniques 
𝜕𝑡𝑢 + 𝓛𝒂𝑢 − 𝓛𝝂𝑢 = 𝑓 

 
Let us discretize both problems by using a backward Euler scheme: 
Step 1:  

𝑢𝑎𝑛+1 − 𝑢𝑛

𝛿𝛿 + 𝓛𝒂𝑢𝑎𝑛+1 = 0        ⇒        𝑢𝑎𝑛+1= 𝑰 + 𝛿𝛿𝓛𝒂 −𝟏𝑢𝑛 

Step 2: 
𝑢𝑛+1 − 𝑢𝑎𝑛+1

𝛿𝛿 + 𝓛𝜈𝑢𝑛+1 = 𝒇        ⇒        𝑢𝑛+1= 𝑰 + 𝛿𝛿𝓛𝜈 −𝟏(𝑢𝑎𝑛+1+𝒇𝛿𝛿) 

As a consequence: 
𝑢𝑛+1 = 𝑰 + 𝛿𝛿𝓛𝜈 −𝟏 𝑰 + 𝛿𝛿𝓛𝒂 −𝟏𝑢𝑛 + 𝒇𝛿𝛿  

 
𝑢𝑛 = 𝑰 + 𝛿𝛿𝓛𝒂 𝑰 + 𝛿𝛿𝓛𝜈 𝑢𝑛+1 − 𝒇𝛿𝛿  

 
𝑢𝑛+1−𝑢𝑛

𝛿𝛿
+ 𝓛𝒂 + 𝓛𝜈 𝑢𝑛+1 = 𝒇 + 𝛿𝛿𝓛𝒂(𝒇 − 𝓛𝜈𝑢𝑛+1) The splitting error is 𝓞(𝛿𝑡)  
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION 

Operator splitting techniques 
 
Consider a convective-dominated flow, where 𝑎 > 𝜈 
 
The advantage of the operator splitting is apparent if we take into account: 
 
• The Courant-Friedrichs-Lewy condition for the convection diffusion equation is: 

𝛿𝛿 ≤ 𝑐𝜈
𝜈
ℎ2 + 𝑐𝑎

|𝒂|
ℎ  

−1

 

• If we have a fine mesh, the maximum time step size is going to be dominated by  ℎ
2

𝜈
. 

• Solving (implicitly) a transient convection-dominated problem is much harder than 
solving the pure transient diffusion problem (for iterative multigrid solvers). 

 
Then a reasonable solution is to use the operator splitting with: 

𝛿𝛿 ≤
ℎ

𝑐𝑎 𝒂
, 

use an explicit method for the convection and an implicit method for the diffusion. 
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION Second order operator splitting 

 
Step 1: Integrate from 𝑡𝑛 to 𝑡𝑛+1/2: 
 

𝑢𝑎𝑛 = 𝑢𝑛 
𝜕𝑡𝑢𝑎 + 𝓛𝒂𝑢𝑎 = 0 

 
Step 2: Integragte from 𝑡𝑛 to 𝑡𝑛+1,  
using 𝑢𝑎

𝑛+1/2 as initial conditions: 
 

𝑢𝜈 𝑡𝑛 = 𝑢𝑎 𝑡𝑛+1/2  
𝜕𝑡𝑢𝜈 + 𝓛𝝂𝑢𝜈 = 𝑓 

 
Step 3: Integrate from 𝑡𝑛+1/2 to 𝑡𝑛+1, 
using 𝑢𝜈𝑛+1  as initial conditions : 
 

𝑢𝑎𝑛 = 𝑢𝜈 𝑡𝑛+1  
𝜕𝑡𝑢𝑎 + 𝓛𝒂𝑢𝑎 = 0 

 
 

𝑢𝜈𝑛+1 𝑢𝑛+1 

𝓛𝒂 

𝑡𝑛+1 

𝑢𝑛 

𝑢𝑎
𝑛+1/2 

𝑢𝑎
𝑛+1/2 

𝑢𝜈𝑛+1   𝓛𝝂 

𝓛𝒂 

𝑡𝑛 

𝑡𝑛+1/2 
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION Second order operator splitting 

 
We consider a Crank-Nicolson discretization scheme (needs to be second order!) 
Step 1: 

2
𝑢𝑎
𝑛+1/2 − 𝑢𝑛

𝛿𝛿 + 𝓛𝒂
𝑢𝑎
𝑛+1/2 + 𝑢𝑛

𝟐 = 0 ⇒     𝑢𝑎
𝑛+1/2= 𝑰 +

𝛿𝛿
4
𝓛𝒂

−𝟏

𝑰 −
𝛿𝛿
4
𝓛𝒂 𝑢𝑛 

Step 2: 
𝑢𝜈𝑛+1 − 𝑢𝑎

𝑛+1/2

𝛿𝛿 + 𝓛𝜈
𝑢𝜈𝑛+1 + 𝑢𝑎

𝑛+1/2

𝟐 = 0 ⇒ 𝑢𝜈𝑛+1 = 𝑰 +
𝛿𝛿
2 𝓛𝜈

−𝟏

𝑰 −
𝛿𝛿
2 𝓛𝜈 𝑢𝑎

𝑛+1/2 

Step 3: 

2
𝑢𝑛+1 − 𝑢𝜈𝑛+1

𝛿𝛿 + 𝓛𝒂
𝑢𝑎𝑛+1 + 𝑢𝜈𝑛+1

𝟐 = 0  ⇒        𝑢𝑛+1= 𝑰 +
𝛿𝛿
4 𝓛𝒂

−𝟏

𝑰 −
𝛿𝛿
4 𝓛𝒂 𝑢𝜈𝑛+1 

As a consequence: 

𝑢𝑛+1 = 𝑰 +
𝛿𝛿
4 𝓛𝒂

−𝟏

𝑰 −
𝛿𝛿
4 𝓛𝒂 𝑰 +

𝛿𝛿
2 𝓛𝜈

−𝟏

𝑰 −
𝛿𝛿
2 𝓛𝜈 𝑰 +

𝛿𝛿
4 𝓛𝒂

−𝟏

𝑰 −
𝛿𝛿
4 𝓛𝒂 𝑢𝑛 

 
                  The splitting error is 𝓞(𝛿𝑡2)  
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION Predictor corrector schemes 

Predictor corrector schemes are also possible: 
Step 1: Integrate from 𝑡𝑛 to 𝑡𝑛+1/2: 
 

𝑢𝑎𝑛 = 𝑢𝑛 
𝜕𝑡𝑢𝑎 + 𝓛𝒂𝑢𝑎 = 0 

 
Step 2: Integrate from 𝑡𝑛+1/2 to 𝑡𝑛+1,  
using 𝑢𝑎

𝑛+1/2 as initial conditions: 
 

𝑢𝜈 𝑡𝑛+1/2 = 𝑢𝑎 𝑡𝑛+1/2  
𝜕𝑡𝑢𝜈 + 𝓛𝝂𝑢𝜈 = 𝑓 

 
Step 3: Integrate from 𝑡𝑛 to 𝑡𝑛+1, 
using 𝑢𝜈𝑛+1  as initial conditions (explicit) : 
 

𝑢𝑛 = 𝑢𝜈 𝑡𝑛+1  
𝜕𝑡𝑢 + 𝓛𝑢 = 0 

𝑢𝜈𝑛+1 𝑢𝑛+1 

𝓛(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 

𝑡𝑛+1 

𝑢𝑛 

𝑢𝑎
𝑛+1/2 

𝑢𝑎
𝑛+1/2 

𝑢𝜈𝑛+1 

𝓛𝝂 

𝓛𝒂 

𝑡𝑛 

𝑡𝑛+1/2 
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OPERATOR SPLITTING FOR THE CONVECTION-DIFFUSION 
EQUATION Predictor corrector schemes 

Step 1: 

2 𝑢𝑎
𝑛+1/2−𝑢𝑛

𝛿𝛿
+ 𝓛𝒂𝑢𝑎

𝑛+1/2 = 𝒇𝑛+1/2         ⇒        𝑢𝑎
𝑛+1/2= 𝑰 + 𝛿𝛿

2
𝓛𝒂

−𝟏
(𝑢𝑛+ 𝛿𝛿

2
𝒇𝑛+1/2) 

Step 2: 

2
𝑢𝜈𝑛+1 − 𝑢𝑎

𝑛+1/2

𝛿𝛿 + 𝓛𝜈𝑢𝜈𝑛+1 = 0        ⇒ 𝑢𝜈𝑛+1 = 𝑰 +
𝛿𝛿
2
𝓛𝜈

−𝟏

(𝑢𝑎
𝑛+1/2) 

Step 3 (explicit integration with the full operator): 
𝑢𝑛+1 − 𝑢𝜈𝑛+1

𝛿𝛿 + 𝓛𝑢𝜈𝑛+1 = 𝒇𝑛+1/2    ⇒ 𝑢𝑛+1 = 𝑰 + 𝛿𝛿𝓛 −𝟏(𝑢𝜈𝑛+1+𝛿𝛿𝒇𝑛+1/2) 

As a consequence (replacing 𝑢𝑎
𝑛+1/2 in equation 2) : 

𝑢𝜈𝑛+1 − 𝑢𝑛

𝛿𝛿 +
1
2𝓛𝑢𝜈

𝑛+1 +
𝛿𝛿 
4 𝓛𝒂𝓛𝜈𝑢𝜈𝑛+1 =

1
2𝒇

𝑛+1/2 

Using equation 3 (instead of 𝓛𝑢𝜈𝑛+1): 

𝑢𝜈𝑛+1 =
𝑢𝑛+1 + 𝑢𝑛

2 −
𝛿𝑡2 

4 𝓛𝒂𝓛𝜈𝑢𝜈𝑛+1 

Finally, replacing in equation 3:  
𝑢𝑛+1−𝑢𝑛

𝛿𝛿 
+ 𝓛 𝑢𝑛+1+𝑢𝑛

2
= 𝒇𝑛+1/2 + 𝛿𝑡2 

4
𝓛𝓛𝒂𝓛𝜈𝑢𝜈𝑛+1          Equivalent to Crank-Nicolson 
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OPERATOR SPLITTING AND FRACTIONAL STEP FOR 
INCOMPRESSIBLE NAVIER-STOKES 

Step 1, convection: 
𝒖𝑎𝑛+1 − 𝒖𝑛

𝛿𝛿 + 𝒖𝑎𝑛+1 ⋅ ∇𝒖𝑎𝑛+1 = 𝟎 

Step 2, diffusion: 
𝒖𝜈𝑛+1 − 𝒖𝑛

𝛿𝛿 − 𝜈Δ𝒖𝜈𝑛+1 = 𝒇 

Step 3, Pressure Poission equation: 

Δ𝑝𝑛+1 =
𝛻 ⋅ 𝒖𝜈𝑛+1

𝛿𝛿  

Step 4: End of step velocity 
𝒖𝑛+1 − 𝒖𝜈𝑛+1

𝛿𝛿 + 𝛻𝑝𝑛+1 = 0, 
 
Other combinations involving 𝑝𝑛 and higher order approximations can be devised. 
 
This could also be applied to velocity correction schemes 
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