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Scenarios which motivate the need of solving a coupled problem: 
 Research projects in which two or more research fields 

need to be put together in order to solve a more complex 
problem. 

 Product development, where design and verification 
involve solving problems which obey to different 
constitutive equations. 

 Commercial software development, two or more already 
existing modules for solving a particular physical problem 
need to be put together and solved in a coupled way. 

 
In all of these cases we depart from the hypothesis that we already 
know how to solve each of the problems, but now we need to 
solve their interaction. 

INTRODUCTION 



Suppose that we have a coupled dynamical system which we need 
to evolve in time. There exist three approaches to the simulation 
of the coupled system: 
• Field elimination: One or more fields are eliminated, the 

remaining field is integrated by means of a time stepping 
scheme. 

• Monolithic or Simultaneous treatment: The two or more 
problems to be coupled are treated in a monolithic way, that is, 
we solve the equations associated to all the problems in a 
single system, simultaneously. 

• Partitioned System: Each of the problems to be solved is 
advanced in time independently. The interaction with the other 
problems is treated as an external forcing term which are 
iteratively communicated between the coupled systems. 
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INTRODUCTION 



An example of Field Elimination 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If we are interested in the fluid behavior, we can simplify the 
problem for the soil and rigid wall domains. 
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Soft Soil 

Water 

Rigid Wall 

FIELD ELIMINATION 



An example of Field Elimination 
 
The effect of the soil and the rigid wall is modeled as a spring: 
 
 
 
 
 
 
 
 
The boundary condition for the fluid at the wall can now be 
simplified to: 

𝐾𝐾𝑥 = � 𝑝
Γ

 

The unknowns for the solid domain problem have been 
eliminated, we only need to solve for the fluid. 
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FIELD ELIMINATION 



However, this cannot be done when facing a general problem.  
• Most problems cannot be simplified to few degrees of 

freedom 
• The condensation of the degrees of freedom associated to 

a general problem can lead to ill-conditioned systems of 
equations, often involving higher order differential systems 
in time 

 
Field Elimination is generally restricted to simple linear problems.  
 
A possibility for applying a particular kind of Field Elimination are 
Reduced-Order Models, but these have complexities of their own.   
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FIELD ELIMINATION 
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DISCRETIZATION IN TIME 

Let us consider the discretization in time of the heat transfer equation: 
 

𝜕𝑡𝑢1 − 𝑘Δ𝑢1 = 𝑓                 in Ω1  
𝑢1 = 𝑢�                  on Γ𝐷 

𝑘𝒏 ⋅ 𝛻𝒖1  = 𝑡̅                  on Γ𝑁   
𝑢1 𝒙, 0 = 𝑢10 𝒙         in Ω1 

 
The time dependent variational form of the problem is: 
 

𝑣, 𝜕𝑡𝑢 + 𝑘 𝑣, 𝑢 −< 𝑣,𝒏 ⋅ 𝛻𝑢 >Γ=< 𝑣, 𝑓 > 
 
plus boundary and initial conditions. 
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We define the finite element space: After discretization in space the problem is: 
 

𝑣ℎ, 𝜕𝑡𝑢ℎ + 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ −< 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ=< 𝑣ℎ, 𝑓 >     ∀𝑣ℎ ∈ 𝑉ℎ(Ω) 
 
Since we are approximating  𝑢ℎ  trough shape functions in 𝑉ℎ , the time 
dependency is found in the coefficients which multiply the test functions: 

𝑢 𝒙, 𝑡 ≈ 𝑢ℎ 𝒙, 𝑡 = �𝑢𝑗 𝑡 𝑁𝑗(𝒙)
𝑗

 

𝜕𝑡𝑢 𝒙, 𝑡 ≈ 𝜕𝑡𝑢ℎ 𝒙, 𝑡 = �𝜕𝑡𝑢𝑗(𝑡)𝑁𝑗(𝒙)
𝑗

 

The associated algebraic problem is: 
 

𝑴
𝐾𝑼
𝐾𝑡 + 𝑲𝑼 = 𝑭 

 
We will call M the mass matrix, K the stiffness matrix and F the forcing term. 

DISCRETIZATION IN TIME 
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Time discretization 
There exist several possibilities for the time dicretization. 
 
We start by defining a splitting of the time interval [0,𝑇]: 
 

0 = 𝑡0 < 𝑡1 < 𝑡2 <. . < 𝑡𝑁 = 𝑇 
 
If these time instants are equispaced, then 𝑡𝑛+1 = 𝑡𝑛 + 𝛿𝑡, with 𝛿𝑡 = 𝑇/(𝑁 + 1) 
  
The objective is to, given 𝑢ℎ 𝒙, 𝑡𝑛 , compute 𝑢ℎ(𝒙, 𝑡𝑛+1).  
 
We introduce the notation:  𝑢ℎ𝑛 ≔   𝑢ℎ (𝒙, 𝑡𝑛) 
 
 
 
 
 

DISCRETIZATION IN TIME 
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Time discretization 
𝜃 − scheme time integration 
We use a finite difference discretization for the time derivative 
The 𝜃 parameter denotes where the operator is evaluated: 

1
𝛿𝑡

𝑣ℎ,𝑢ℎ𝑛+1 − 𝑢ℎ𝑛 +          𝜃 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ𝑛+1 −< 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ𝑛+1 >Γ−< 𝑣ℎ,𝑓𝑛+1 >  
+ 1 − 𝜃 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ𝑛 −< 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ𝑛 >Γ−< 𝑣ℎ,𝑓𝑛 >  = 0 

with 0 ≤ 𝜃 ≤ 1. 
 
The algebraic form of the problem is now: 
 

𝑴𝛿𝑡𝑼𝑛+1 + 𝜃𝑲𝑼𝑛+1 + 1 − 𝜃 𝑲𝑼𝑛 = 𝜃𝑭𝑛+1 + 1 − 𝜃 𝑭𝑛 
 
The definition of the several 𝜃 methods appears from the choice of 𝜃: 
 
 𝜃 = 0:       Forward Euler scheme,  explicit,  conditionally stable,            𝓞(𝛿𝑡) 
 𝜃 = 1/2:  Crank-Nicolson scheme, implicit, unconditionally stable,       𝓞(𝛿𝑡2) 
 𝜃 = 1:       Backward Euler scheme,  implicit,  unconditionally stable,    𝓞(𝛿𝑡  ) 
 

DISCRETIZATION IN TIME 
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Time discretization 
Stability of the 𝜃 scheme: 
Let us consider the expression of the 1D solution in Fourier modes: 

𝑢𝑛 = �𝑈𝑗𝑛𝜙𝑗
𝑗

 

Let us also consider the equation without external forces (homogeneous solution).  
If we insert this solution into the discrete 𝜃-equation, taking into account that all modes 
are orthogonal, we obtain: 

1
𝛿𝑡𝑀𝑗 𝑈𝑗

𝑛+1 − 𝑈𝑗𝑛+1 + 𝜃𝐾𝑗𝑈𝑗𝑛+1 + 1 − 𝜃 𝐾𝑈𝑗𝑛 = 0 

So: 

𝑈𝑗𝑛+1 =
1
𝛿𝑡𝑀𝑗 − 1 − 𝜃 𝐾

1
𝛿𝑡𝑀𝑗 + 𝜃𝐾

𝑈𝑗𝑛 

We get unconditional stability only if we can assure that for any 𝛿𝑡: 
1
𝛿𝑡𝑀𝑗 − 1 − 𝜃 𝐾

1
𝛿𝑡𝑀𝑗 + 𝜃𝐾

≤ 1 ⇒ 𝜃 ≥
1
2 

DISCRETIZATION IN TIME 
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Time discretization 
Backward differences in time 
In this method several of the previous steps in time are used to approximate the time 
derivative at 𝑡𝑛+1.  
 
The schemes are implicit because we evaluate the operator at 𝑡𝑛+1: 
 

𝑴𝛿𝑡𝑼𝑛+1 + 𝑲𝑼𝑛+1 = 𝑭𝑛+1 
 
Approximation for 𝛿𝑡𝑼𝑛+1: 
 
• BDF1: 𝛿𝑡𝑼𝑛+1 = (𝑼𝑛+1 − 𝑼𝑛)/𝛿𝑡                                     Unconditionally stable,   𝓞(𝛿𝑡) 
• BDF2: 𝛿𝑡𝑼𝑛+1 = (𝟑

𝟐
𝑼𝑛+1 − 𝟐𝑼𝑛 + 𝟏

𝟐
𝑼𝑛−1)/𝛿𝑡              Unconditionally stable,   𝓞(𝛿𝑡2) 

• BDF3: 𝛿𝑡𝑼𝑛+1 = (𝟏𝟏
𝟔
𝑼𝑛+1 − 𝟑𝑼𝑛 + 𝟑

𝟐
𝑼𝑛−1 − 𝟏

𝟑
𝑼𝑛−2)/𝛿𝑡 Conditionally stable,  𝓞(𝛿𝑡3)   

 
Up to order 6. 
 
 

DISCRETIZATION IN TIME 
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Time discretization 
Adams method (Linear multistep method) 
• This method is derivated from polynomial fitting 
• It can be either explicit or implicit 
 
Adams-Bashforth (explicit): 
ADB1:  𝑴

𝛿𝑡
𝑼𝑛+1 − 𝑼𝑛 + 𝑲𝑼𝑛 = 𝑭𝑛 

ADB2:  𝑴
𝛿𝑡

𝑼𝑛+1 − 𝑼𝑛 + 3
2
𝑲𝑼𝑛 − 1

2
𝑲𝑼𝑛−1 = 3

2
𝑭𝑛 − 1

2
𝑭𝑛−1 

… 
 
Adams-Moulton (implicit): 
ADM1: 𝑴

𝛿𝑡
𝑼𝑛+1 − 𝑼𝑛 + 𝑲𝑼𝑛+1 = 𝑭𝑛+1 

ADM2: 𝑴
𝛿𝑡

𝑼𝑛+1 − 𝑼𝑛 + 1
2
𝑲𝑼𝑛+1 + 1

2
𝑲𝑼𝑛 = 1

2
𝑭𝑛+1 + 1

2
𝑭𝑛 

 
The method involves the evaluation of the operator at preceding time steps, but they can 
be stored in memory. 

DISCRETIZATION IN TIME 
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Time discretization 
Runge-Kutta methods 
 
Intermediate steps are used  for the evaluation of the time derivative 
 
The most popular one is the explicit 4th order Runge-Kutta method: 
 

𝑼𝑛+1 = 𝑼𝑛 +
1
6 𝛿𝑡 𝒌1 + 2𝒌2 + 3𝒌3 + 𝒌4  

with: 
𝒌1 = 𝑭𝑛 − 𝑲𝑼𝑛 

𝒌2 = 𝑭𝑛+1/2 − 𝑲 𝑼𝑛 +
1
2 𝛿𝑡𝒌1  

𝒌3 = 𝑭𝑛+1/2 − 𝑲 𝑼𝑛 +
1
2 𝛿𝑡𝒌2  

𝒌4 = 𝑭𝑛+1 − 𝑲 𝑼𝑛 + 𝛿𝑡𝒌3   
 
 

DISCRETIZATION IN TIME 
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Lumping the Mass matrix 
When using explicit time integration schemes, it is convenient to have a diagonal mass 
matrix to avoid solving a linear system of equations. 
 
The term we need to approximate is: 𝑣ℎ,𝑢ℎ = ∫ 𝑁𝑖𝑁𝑗𝐾Ω𝑈𝑗

 
Ω  

 
A diagonal mass matrix can be obtained by using a closed quadrature: Gauss points are on 
the finite element nodes. 
 
 
 
 
 
 
 
 
For high-order methods, standard closed quadrature rules yield zero mass for some of the 
nodes. Special quadrature rules need to be used.  
 
 

DISCRETIZATION IN TIME 
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Time discretization 
Overview 
• Explicit time integration:  
 No linear system to solve 

 Conditionally stable: small time steps  
 
• Implicit time integration schemes: 
 Need to solve linear systems for the implicit system 
 Unconditionally stable up to 2nd order. Larger time steps are possible 
 
Adams and Backward differences methods: 

• We only evaluate one function per step 
• Need to be started with lower order methods 

 
Runge-Kutta methods 

• Several functions need to be evaluated per step 
• Better stability and accuracy for the same order 
• More expensive 

 

DISCRETIZATION IN TIME 
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Second derivative in time problems 
We are now considering second order in time problems (wave equation, solid mechanics…) 
 
The problem we want to solve is of the form: 
 

𝜕𝑡𝑡2 𝑢ℎ + 𝓛� 𝜕𝑡𝑢ℎ + 𝓛 𝑢ℎ = 𝑓 
 
We need to approximate  the second derivative in time: 𝜕𝑡𝑡2 𝑢ℎ. 
The most common approach is to introduce and additional variable: 

𝑦ℎ = 𝜕𝑡𝑢ℎ 
 
And solve the coupled system: 

𝜕𝑡𝑦ℎ + 𝓛� 𝑦ℎ + 𝓛 𝑢ℎ = 𝑓 
𝑦ℎ = 𝜕𝑡𝑢ℎ 

 
This implicitly introduces an approximation for 𝜕𝑡𝑡2 𝑢ℎ. Now all the methods for the first 
time derivative can be applied. 

DISCRETIZATION IN TIME 
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Second derivative in time problems 
A popular implicit scheme for the solid mechanics equations is Newmark’s method: 
 

𝑢ℎ𝑛+1 = 𝑢ℎ𝑛 + 𝛿𝑡𝑢ℎ𝑛𝛿𝑡 +
1
2
− 𝛽 𝛿𝑡𝑡2 𝑢ℎ𝑛 + 𝛽𝛿𝑡𝑡2 𝑢ℎ𝑛+1 𝛿𝑡2 

𝛿𝑡𝑢ℎ𝑛+1 = 𝛿𝑡𝑢ℎ𝑛 + 1 − 𝛾 𝛿𝑡𝑡2 𝑢ℎ𝑛 + 𝛾𝛿𝑡𝑡2 𝑢ℎ𝑛+1 𝛿𝑡   
 
𝛾 and 𝛽 are parameters which define the particular Newmark method: 
 
Stability conditions: 

𝛾 ≥
1
2 

𝛽 ≥
1
4

1
2 + 𝛾

2

 

 
The first condition implies Crank-Nicolson or Backward Euler for the velocity equation. 
 
Second order, stable, non-dissipative scheme: 𝛾 = 0.5, 𝛽 = 0.25. 

DISCRETIZATION IN TIME 
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 

Let us consider the stationary finite element approximation of the heat transfer 
equation. We define 𝑉 = 𝐻1 Ω ,𝑉ℎ ⊂ 𝑉. The problem is: find 𝑢 ∈ 𝑉ℎ : 
 

𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ − 𝑘 < 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ=< 𝑣ℎ,𝑓 >     ∀𝑣ℎ ∈ 𝑉ℎ(Ω) 
 
No boundary conditions have been applied so far. Let us suppose that the boundary 
conditions are of the form: 

𝑢 = 𝑢�       in Γ 
 
We decompose 𝑢ℎ into the contribution of shape functions with nodes on Γ and 
interior shape functions: 

𝑢ℎ 𝒙 = 𝑢ℎ0 𝒙 + 𝑢ℎ𝚪 𝒙 = �𝑈𝑗0𝑁𝑗0 𝒙
𝑗

+ �𝑈𝑗Γ𝑁𝑗Γ 𝒙
𝑗

 

 
Let us also denote 𝑉ℎ,0 as the subspace of 𝑉ℎ with functions vanishing on Γ.  
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 

The usual approach for enforcing Dirichlet boundary conditions strongly is: 
 
• We test only against test functions 𝑣ℎ,0 ∈ 𝑉ℎ,0. 

 
• Since the value of the unknown in the boundary is known, we can say: 

𝑈𝑗Γ = 𝑢�  
 
• We take into account that, since 𝑣ℎ,0 vanishes on Γ: 

𝑘 < 𝑣ℎ,0,𝒏 ⋅ 𝛻𝑢ℎ >Γ= 0 
 
Then, the weak form of the problem with boundary conditions is: 
 

𝑘 𝛻𝑣ℎ,0,𝛻𝑢ℎ0 =< 𝑣ℎ, 𝑓 > −𝑘 𝛻𝑣ℎ,0,𝛻𝑢ℎΓ       ∀𝑣ℎ,0 ∈ 𝑉ℎ,0(Ω) 
 
Let us study the stability of this problem. 
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 

Poincaré inequality: ∀𝑢 ∈ 𝐻1 Ω : 
 

𝑢 𝐿2 Ω ≤ 𝑐1𝐿0 𝑢 𝐿2 Γ + 𝑐2𝐿0 𝛻𝑢 𝐿2(Ω) 
 
Poincaré inequality states that for a sufficiently smooth 𝑢, we can bound the value of 
the function in the interior of the subdomain through the value in the boundary and 
its gradient. 
 
In 1D, suppose 𝑢 ∈ 𝐶1 Ω : 
 
 𝑢 𝐿∞ Ω ≤ |𝑢0| + 𝐿0 𝛻𝑢 𝐿∞(Ω) 
 
Inverse Poincaré inequality:  
∀𝑢 ∈ 𝐻1 Ω , for a patch of elements w: 
 
 𝑢 𝐿2 𝑤 ≥ 𝑐𝑖  ℎ 𝛻𝑢 𝐿2(𝑤) 
 



Coupling In Time I 22 

WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 

Coercivity: 
 
A bilinear form 𝐵 ·,· :𝑉 × 𝑉 → 𝑅 is said to be coercive if: 

𝐵 𝑣, 𝑣 ≥ 𝑘 𝑣 𝑉
2    ∀𝑣 ∈ 𝑉 

 
The coercivity of the bilinear form ensures that the resulting system matrix will be 
positive definite. 
 
Let us show that the bilinear form with boundary conditions is coercive in the norm: 
 

𝑣
2

= 𝑘 𝑢 𝐿2 Γ
2 + 𝑘 𝛻𝑢 𝐿2 Ω

2 ≥ 𝑐1 𝑘 𝑢 𝐻1 Ω
2

 
We have: 
 

𝐵 𝑣ℎ,0, 𝑣ℎ,0 = 𝑘 𝛻𝑣ℎ,0,𝛻𝑣ℎ,0 = 𝑘 𝛻𝑣ℎ,0 𝐿2 Ω

2
= 𝑘 𝛻𝑣ℎ,0 𝐿2 Ω

2
+𝑘 𝑣ℎ,0 𝐿2 Γ

2
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 

Weak imposition of boundary conditions 
 
Instead of restricting to 𝑉ℎ,0 we want to consider the full 𝑉ℎ space: 
 

𝐵 𝑣ℎ,𝑢ℎ = 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ − 𝑘 < 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ=< 𝑣ℎ, 𝑓 >     ∀𝑣ℎ ∈ 𝑉ℎ(Ω) 
 
If we study the coercivity of 𝐵 we see that: 
 

𝐵 𝑢ℎ,𝑢ℎ = 𝑘 ∇𝑢ℎ 𝐿2(Ω)
2 − 𝑘 < 𝑢ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ 

≥ 𝑘 ∇𝑢ℎ 𝐿2 Ω
2 − 𝑘 𝑢ℎ L2 Γ 𝛻𝑢ℎ L2 Γ  

≥ 𝑘 ∇𝑢ℎ 𝐿2 Ω
2 −

𝑐𝑖  
𝐿0
𝑘 𝑢ℎ L2 Γ

2
 

Not only we do not have control on 𝑘 𝑢ℎ 𝐿2 Γ
2

 but there are terms which are 
substracting stability. 
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 
The penalty method 
 
In the penalty method this issue is addressed by adding a large enough penalty term: 
 

𝐵𝑝 𝑣ℎ,𝑢ℎ = 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ − 𝑘 < 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ +𝛼 𝑣ℎ,𝑢ℎ Γ 
=< 𝑣ℎ, 𝑓 > +𝛼 𝑣ℎ,𝑢� Γ         ∀𝑣ℎ ∈ 𝑉ℎ(Ω) 

 
The additional term is consistent (it enforces the Dirichlet boundary conditions) and 
will ensure the stability of the weak form. 
 
Coercivity of 𝐵𝑝: 

𝐵𝑝 𝑢ℎ ,𝑢ℎ = 𝑘 𝛻𝑢ℎ,𝛻𝑢ℎ − 𝑘 < 𝑢ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ +𝛼 𝑢ℎ ,𝑢ℎ Γ 

≥ 𝑘 𝑢ℎ 𝐿2 Ω
2 −

𝑐𝑖  
ℎ 𝑘 𝑢ℎ L2 Γ

2 + 𝛼 𝑢ℎ 𝐿2(Γ) 

 
It is clear that in order to ensure stability we require: 
 

𝛼 >
𝑐𝑖  
ℎ 𝑘 
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 
The penalty method 
 
Some inconvenients of the penalty method: 
 
• It is non-symmetric even for symmetric problems 

 
• The required value for 𝛼 is difficult to estimate. In practice it is taken very large 

(106), which can result in ill-conditioned systems of equations. 
 

 
 
 



Coupling In Time I 26 

WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 
Nitche’s method 
A symmetric, better conditioned version of the penalty method: 
 

𝐵𝑁 𝑣ℎ,𝑢ℎ = 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ − 𝑘 < 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ +𝛼
𝑘
ℎ
𝑣ℎ,𝑢ℎ Γ 

−𝑘 < 𝒏 ⋅ 𝛻𝑣ℎ,𝑢ℎ >Γ 

=< 𝑣ℎ, 𝑓 > +𝛼
𝑘
ℎ
𝑣ℎ,𝑢� Γ  − 𝑘 < 𝒏 ⋅ 𝛻𝑣ℎ,𝑢� >Γ           ∀𝑣ℎ ∈ 𝑉ℎ(Ω) 

 
The term: 

𝑘 < 𝒏 ⋅ 𝛻𝑣ℎ,𝑢ℎ >Γ −𝑘 < 𝒏 ⋅ 𝛻𝑣ℎ,𝑢� >Γ 
 
enforces boundary conditions and makes the method symmetric (although it 
substracts stability). 
 
It is now sufficient to take:       𝛼 > 2𝑐𝑖    to ensure stability 
 
𝑐𝑖  depends on the shape of the elements, so for non-stretched elements 𝑐𝑖 = 𝓞(1). 
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 
Nitche’s method 
Different expressions for the 𝛼 parameter need to be devised for each physical 
problem! 
 
Example: Convection – diffusion equation 
 

−𝑘Δ𝑢 + 𝒂 ⋅ 𝛻𝑢 = 𝑓                 in Ω   
𝑢 = 𝑢�                  on Γ𝐷 

 
The weak form of the problem is: 
 

𝐵 𝑣ℎ,𝑢ℎ = 𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ + 𝑣ℎ,𝒂 ⋅ 𝛻𝑢ℎ − 𝑘 < 𝑣ℎ,𝒏 ⋅ 𝛻𝑢ℎ >Γ=< 𝑣ℎ,𝑓 >     
      ∀𝑣ℎ ∈ 𝑉ℎ(Ω) 
 
This weak form requires of stabilization terms in order to ensure that the error is 
bounded, but coercivity of the bilinear form can be obtained without them. 
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WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS 
Nitche’s method 
If we study the coercivity of the bilinear form without boundary conditions: 

𝐵 𝑢ℎ,𝑢ℎ = 𝑘 𝛻𝑢ℎ 𝐿2(Ω) + 𝑢ℎ,𝒂 ⋅ 𝛻𝑢ℎ − 𝑘 < 𝑢ℎ ,𝒏 ⋅ 𝛻𝑢ℎ >Γ 

≥ 𝑘 𝛻𝑢ℎ 𝐿2 Ω + 𝑢ℎ,𝒂 ⋅ 𝛻𝑢ℎ − 𝑘
𝑐𝑖
ℎ 𝑢ℎ 𝐿2 Ω  

= 𝑘 𝛻𝑢ℎ 𝐿2 Ω + � 𝒂 ⋅
𝛻𝑢ℎ2

2Ω
− 𝑘

𝑐𝑖
ℎ 𝑢ℎ 𝐿2 Ω  

= 𝑘 𝛻𝑢ℎ 𝐿2 Ω + � 𝛻 ⋅ 𝒂
𝑢ℎ2

2 −
Ω

� 𝛻 ⋅ 𝒂
𝑢ℎ2

2Ω
− 𝑘

𝑐𝑖
ℎ 𝑢ℎ 𝐿2 Ω  

= 𝑘 𝛻𝑢ℎ 𝐿2 Ω + � 𝒏 ⋅  𝒂 
𝑢ℎ2

2Γ
− 𝑘

𝑐𝑖
ℎ 𝑢ℎ 𝐿2 Ω  

 
In the outflow boundary:  𝒏 ⋅ 𝒂 > 0  the convective term is adding stability 
 
But in the inflow 𝒏 ⋅ 𝒂 < 0 it substracts stability! 
For Nitsche’s method, we will require a stabilization term in the inflow of the form: 

𝛼
𝑘
ℎ −

1
2𝒏 ⋅  𝒂 𝑣ℎ,𝑢ℎ − 𝑢� Γ 
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DIRICHLET BOUNDARY CONDITIONS THROUGH LAGRANGE 
MULTIPLIERS 

Another possibility consists in the use of Lagrange Multipliers for the imposition of 
Dirichlet boundary conditions. 
 
Let us define 𝑉ℎ ⊂ 𝐻1(Ω), 𝑄ℎ ⊂ 𝐻−1/2(Γ). Let us consider the weak form of the 
problem: find 𝑢ℎ ∈ 𝑉ℎ, 𝜆ℎ ∈ 𝑄ℎ such that: 
 

𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ −< 𝑣ℎ, 𝜆ℎ >𝛤=< 𝑣ℎ,𝑓 >           ∀𝑣ℎ ∈ 𝑉ℎ 
< 𝜇,𝑢ℎ >Γ=< 𝜇,𝑢� >Γ           ∀𝜇ℎ ∈ 𝑄ℎ 

 
The Lagrange multiplier 𝜆ℎ plays the role of the fluxes 𝑘(𝒏 ⋅ 𝛻𝑢ℎ). 
 
The boundary conditions are tested against 𝜇, the test function for the Lagrange 
multipliers. 
This is very similar to Nitsche’s method with some differences: 
• There is no penalty parameter. 
• The space for the Lagrange multipliers is arbitrary, contrary to the space for 

𝑘𝒏 ⋅ 𝛻𝑢ℎ which is linked to the interpolation space for 𝑢ℎ. 
• An inf-sup compatibility condition between interpolation spaces needs to be 

fulfilled. 
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DIRICHLET BOUNDARY CONDITIONS THROUGH LAGRANGE 
MULTIPLIERS 

Interpolation spaces compatibility conditions 
 
• ∀𝜆ℎ ∈ 𝑄ℎ   ∃𝑣ℎ ∈ 𝑉ℎ |  < 𝑣ℎ, 𝜆ℎ >Γ≥ 𝑣ℎ 𝑉ℎ 𝜆ℎ 𝑄ℎ 
• ∀𝑢ℎ ∈ 𝑉ℎ  | 𝑃𝑄ℎ 𝑢ℎ = 0    then 𝛻𝑢ℎ L2(Ω)

2 ≥ 𝛽 𝑢ℎ 𝐻1(Ω)
2  

 
where 𝑃𝑄ℎ 𝑢ℎ  denotes the projection of 𝑢ℎ onto the Lagrange multiplier space 𝑄ℎ. 
This compatibility conditions are satisfied by equal interpolation spaces 
 
Stabilized Lagrange multipliers 
 
A stabilized formulation which allows arbitrary interpolation spaces can be obtained by 
adding stabilization terms: 
 
𝑘 𝛻𝑣ℎ,𝛻𝑢ℎ −< 𝑣ℎ, 𝜆ℎ >𝛤 +𝛼 < 𝑣ℎ, 𝜆ℎ − 𝑘𝒏 ⋅ 𝛻𝑢ℎ >Γ=< 𝑣ℎ, 𝑓 >           ∀𝑣ℎ ∈ 𝑉ℎ 

𝛼 < 𝜇ℎ, 𝜆ℎ − 𝑘𝒏 ⋅ 𝛻𝑢ℎ >Γ+< 𝜇,𝑢ℎ >Γ=< 𝜇, 𝑢� >Γ           ∀𝜇ℎ ∈ 𝑄ℎ 
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MONOLITHIC APPROACH 

Let us consider a time dependent coupled problem, 
involving two physical subdomains Ω1 and Ω2: 
 

𝜕𝑡𝑢1 + 𝓛1𝑢1 = 𝑓1 
𝜕𝑡𝑢2 + 𝓛2𝑢2 = 𝑓2 

 
One or both of the problems might involve a second order 
time derivative: 
 

𝜕𝑡𝑡2 𝑢�2 + 𝓛�2𝑢�2 = 𝑓2 
 
This is the case of solid mechanics problems, where the 
operator 𝓛�2 depends on the displacement field, while the 
momenum balance equation depends on the 
accelerations. 
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MONOLITHIC APPROACH 
Examples: 
• Transient heat transfer equation: find 𝑢1 in Ω1 × (0,𝑇): 

𝜕𝑡𝑢1 − 𝑘Δ𝑢1 = 𝑓                 in Ω1  
𝑢1 = 𝑢�                  on Γ𝐷 

𝑘𝒏 ⋅ 𝛻𝑢1  = 𝑡̅                  on Γ𝑁   
𝑢1 = 𝑢2                on Γ 

𝑘𝒏 ⋅ 𝛻𝑢1  = 𝑘𝒏 ⋅ 𝛻𝒖𝟐    on Γ    
𝑢1 𝒙, 0 = 𝑢10 𝒙         in Ω1 

 
• Dynamic solid mechanics problems: 𝒖𝟏,𝜌1 in Ω1 × (0,𝑇): 

𝜌1𝐾𝑡𝑡2 𝒖1 − 𝛻 ⋅ 𝝈1 = 𝒇                 in Ω1 
𝜌1 = 𝜌10𝐽            in Ω1 

      𝐽 = det 𝑭           𝑭 =
𝜕𝒙
𝜕𝑿 

𝒖1 = 𝒖�                 on Γ𝐷 
𝒏 ⋅ 𝝈𝟏  = 𝑡̅                  on Γ𝑁   

𝒖1 = 𝒖2               on Γ 
𝒏 ⋅ 𝝈𝟏  = 𝒏 ⋅ 𝝈𝟏         on Γ  

𝒖1 𝒙, 0 = 𝒖10 𝒙         in Ω1 
𝜌1 𝒙, 0 = 𝜌10 𝒙          in Ω1 
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MONOLITHIC APPROACH 
Examples: 
• Incompressible Navier-Stokes equations: find 𝒖𝟏, 𝑝1 in Ω1 × (0,𝑇): 

 
𝜕𝑡𝒖1 + 𝒖1 · 𝛻𝒖1  − 𝜈𝜈𝒖1 + 𝛻𝑝1 = 𝒇           in Ω1 

𝛻 · 𝒖1 = 0           in Ω1 
𝒖𝟏 = 𝒖�           on Γ𝐷1 

𝒏 · 𝝈𝟏 = �̅�            on Γ𝑁1 
𝒖𝟏 = 𝒖𝟐         on Γ  

𝒏 · 𝝈𝟏 = 𝒏 · 𝝈𝟐   on Γ  
𝒖𝟏 𝒙, 0 = 𝒖10       in Ω1 

 
 
The problems we are solving do not need to be homogeneous in both 
subdomains (but they can):  
• Fluid-Structure Interaction problems 
• Incompressible flow – Darcy flow 
• The same problem but different materials: 

• Structure-structure problem  



The monolithic approach is the most straightforward one. 
 
Let us suppose that we want to solve a problem involving two 
continuum medium (for instance a fluid-structure interaction 
problem): 
 
 
 
 
 
Transmission conditions consist of the continuity of velocities and  
the normal component of the stresses at the interface: 

          𝒖𝟏  = 𝒖𝟐              on Γ 
    𝝈1 ⋅ 𝒏𝟏 + 𝝈2 ⋅ 𝒏𝟐  = 𝟎                on Γ 

 
The first equation is usually imposed in a strong manner, while the 
second one is enforced in a weak sense. 
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MONOLITHIC APPROACH 



The finite element meshes for subdomains 1 and 2, can be matching and non-
matching. 
 
 
 
 
 
 
 
 
 

 
• If the meshes are matching, the imposition of the transmission conditions is 

straightforward. 
 

• For non-matching grids, on the other hand, we need to explicitly enforce 
them. 
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MONOLITHIC APPROACH 



Let us consider the finite element weak form associated to a general continuum 
mechanics problem: 
 
 

𝒗ℎ,𝜕𝑡𝒖ℎ Ω + 𝛻𝒗ℎ,𝝈ℎ Ω − 𝒗ℎ,𝒏 ⋅ 𝝈ℎ Γ = 𝒗ℎ,𝒇 Ω 
𝒖ℎ = 𝒖�          on Γ 

 
 

where ·,· Ω denotes the 𝐿2-inner product over the domain and ·,· Γ  denotes 
the product over the boundary. 𝒗ℎ  denotes the velocity test functions, each 
test function corresponding to one node of the finite element mesh. 
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MONOLITHIC APPROACH 
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Let us consider a Neumann (1) – Neumann (2) approach. 
 
• The equations for subdomain 1 are (general, before coupling): 

 
𝒗1ℎ, 𝜕𝑡𝒖𝟏ℎ  

Ω1 + 𝛻𝒗1ℎ,𝜎 𝒖𝟏ℎ Ω1 −< 𝒗1ℎ,𝒏 ⋅ 𝝈 𝒖𝟏ℎ >Γinterface=< 𝒗1ℎ,𝜌𝒃 >Ω1  
 
• On the other hand, we have the equation for subdomain 2. Here we use the fact 

that:  
𝒏𝟐 ⋅ 𝝈 𝒖2ℎ + 𝒏𝟏  ⋅ 𝝈 𝒖𝟏ℎ  = 𝟎 

 
𝒗𝟐ℎ, 𝜕𝑡𝒖2ℎ Ω2 + 𝛻𝒗𝟐ℎ,𝝈 𝒖2ℎ  

Ω2 −< 𝒗𝟐ℎ,𝒏𝟐  ⋅ 𝝈 𝒖𝟏ℎ   >Γinterface  
=< 𝒗𝟐ℎ,𝜌𝒃 >Ω2 

 
If the meshes match at the interface and we are using the same interpolation space 
𝑉ℎ for 𝒖ℎ1  and 𝒖ℎ2 : 

−< 𝒗𝟐ℎ,𝒏𝟐 ⋅ 𝝈 𝒖𝟏ℎ   >Γinterface=< 𝒗1ℎ,𝒏𝟏 ⋅ 𝝈 𝒖𝟏ℎ   >Γinterface= 
𝒗1ℎ,𝜕𝑡𝒖𝟏ℎ  

Ω1 + 𝛻𝒗1ℎ,𝝈 𝒖𝟏ℎ   
Ω1 −< 𝒗𝟏ℎ,𝜌𝒃 >Ω1   

 
 

MONOLITHIC APPROACH 
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So we can write the problem for the second domain as: 
𝒗𝟐ℎ, 𝜕𝑡𝒖2ℎ Ω2 + 𝛻𝒗𝟐ℎ,𝜎 𝒖2ℎ  

Ω2 + 𝒗1ℎ, 𝜕𝑡𝒖𝟏ℎ  
Ω1 + 𝛻𝒗1ℎ,𝝈 𝒖1ℎ   

Ω1 =
< 𝒗𝟐ℎ,𝜌𝒃 >Ω2  + < 𝒗1ℎ,𝜌𝒃 >Ω1   

  
The equations for the first domain are exactly the same. 
 
• There is no need to integrate boundary terms. 

 
• We can simply assemble the global system and use the unknowns at the 

interface to account for both velocity values. 
 

MONOLITHIC APPROACH 



When the grids are non-matching, these transmission conditions can be enforced in 
three different manners: 
• Dirichlet (1) – Neumann (2) 

We enforce  
  𝒖1 = 𝒖2                   on Γ   
in the equations for subdomain 1 (Dirichlet boundary condition). 
We enforce   

𝝈1 ⋅ 𝒏 = 𝝈2 ⋅ 𝒏         on Γ 
in the equations for subdomain 2 (Neumann boundary condition). 

 
• Neumann (subdomain 2) – Dirichlet (subdomain 1) 

 
• Robin (subdomain 1) – Robin (subdomain 2) 

We enforce: 
𝛼 𝒖1 − 𝒖2 + 𝛽 𝝈1 ⋅ 𝒏 − 𝝈2 ⋅ 𝒏 = 0             on Γ 

in the equations for both subdomains. 
We recall that we need to use different coefficients 𝛼1,𝛽1,𝛼2,𝛽2 so that we 
ensure that the equations in both subdomains are linearly independent. 
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MONOLITHIC APPROACH 



Dirichlet boundary conditions on a finite element discretization 
We want to enforce Dirichlet boundary conditions on  the weak form: 
 

𝒗ℎ,𝜕𝑡𝒖ℎ Ω + 𝛻𝒗ℎ,𝝈ℎ Ω − 𝑣ℎ,𝒏 ⋅ 𝝈ℎ Γ = 𝒗ℎ,𝒇 Ω 
𝒖ℎ = 𝒖�          on Γ 

 
Strong imposition of Dirichlet boundary conditions in a finite element problem: 
Original system without b.c.      Equations enforcing D.B.C       Final system 
 
 
 
 
 
 
 
Enforcement can be node to node (matching) or through interpolation. 
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MONOLITHIC APPROACH 



Enforcement of velocity Dirichlet transmission conditions 
But now, we need to enforce the velocity of the continuum medium 1 to be equal to 
the velocity of continuum medium 2 at the interface. 
 
We now represent the global system of equations (which involves the equations for 
both subdomains), prior to the application of the coupling conditions: 
 
 
 
 
 

 
 

Note that both systems are uncoupled, there is no influence from one to the other. If 
the systems were well posed, they could be solved independently. 
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MONOLITHIC APPROACH 



Enforcement of velocity Dirichlet transmission conditions 
In order to enforce the continuity of velocities (Dirichlet equations): 

𝒖1 = 𝒖2              on Γ 
We replace the equations for subdomain 1 corresponding to nodes on the interface 
with the Dirichlet equations: 
 
 
 
 
 

 
• We have used the subdomain 1 nodes at the interface to enforce the continuity of 

velocities. 
• Only the equations for those nodes have been modified. 
• The subdomain 1 system is no longer symmetric. 
• Subdomain 2 problem “knows” nothing about what is going on in subdomain 1 

(stress transmission conditions are missing). 
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MONOLITHIC APPROACH 



Neumann boundary conditions on finite elements 
 
In standard interpolation approaches for solid and fluid mechanics finite elements, 
stress transmission conditions are enforced weakly. 

𝒗ℎ,𝜕𝑡𝒖ℎ Ω + 𝒗ℎ,𝒖ℎ ⋅ 𝛻𝒖ℎ + 𝛻𝒗ℎ,𝝈ℎ − 𝒗ℎ,𝒏 · 𝜎ℎ Γ = 𝒗ℎ,𝒇 Ω 
The terms in blue correspond to the integral of the tractions. In order to enforce 
Neumann boundary conditions we simply need to replace these terms by the known 
traction: 

𝒗ℎ,𝜕𝑡𝒖ℎ Ω + 𝒗ℎ,𝒖ℎ ⋅ 𝛻𝒖ℎ +  𝛻𝒗ℎ,𝝈ℎ = 𝒗ℎ,𝒇 Ω + 𝒗ℎ, 𝒕 Γ 
 
For a general continuum mechanics problem, this can be done by adding an 
additional term to the RHS: 
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MONOLITHIC APPROACH 



Final coupled Monolithic system for a Neumann (2) – Dirichlet (1) coupling scheme 
 
 
 
 
 
 
 
 
• The system corresponding to subdomain 2 has not been modified. 
• Coupling with the subdomain 1 is through the transmitted tractions (magenta 

terms). 
• Dirichlet boundary conditions for subdomain 1 problem have been taken into 

account so that velocities match at the interface (green terms). 
• This can obviously done the other way around: enforce Dirichlet to subdomain 2 

and Neumann conditions to subdomain 1.  
• The final system is not symmetric. 
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MONOLITHIC APPROACH 



Robin – Robin coupling boundary conditions 
 
When using Robin boundary conditions, both the velocity and traction conditions are 
enforced in a weak sense. For a general continuum mechanics problem, the finite 
element weak form with Robin-Robin boundary conditions is: 
 
𝒗ℎ, 𝜕𝑡𝒖ℎ Ω + 𝛻𝒗ℎ,𝝈ℎ Ω − 𝒗ℎ,𝒏 ⋅ 𝝈ℎ Γ + 𝛼 𝒗ℎ,𝒖ℎ − 𝒖� Γ + 𝛽 𝒗ℎ,𝝈ℎ ⋅ 𝒏 − 𝒕 Γ

= 𝒗ℎ,𝒇 Ω 
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MONOLITHIC APPROACH 



Robin – Robin coupling boundary conditions 
 
The final coupled problem is: 
 

𝒗1ℎ ,𝜕𝑡𝒖1ℎ Ω1 + 𝛻𝒗1ℎ ,𝝈1ℎ Ω1 − 𝒗1ℎ ,𝒏 ⋅ 𝝈1ℎ Γ + 𝛼1 𝒗1ℎ ,𝒖1ℎ − 𝒖2ℎ Γ
+ 𝛽1 𝒗1ℎ ,𝝈𝟐ℎ ⋅ 𝒏 − 𝝈𝟏ℎ ⋅ 𝒏 Γ = 𝒗1ℎ ,𝒇 Ω1 

 
𝒗2ℎ ,𝜕𝑡𝒖2ℎ Ω2 + 𝛻𝒗2ℎ ,𝝈2ℎ Ω2 − 𝒗2ℎ ,𝒏 ⋅ 𝝈2ℎ Γ + 𝛼2 𝒗2ℎ ,𝒖1ℎ − 𝒖2ℎ Γ +
𝛽2 𝒗2ℎ ,𝝈𝟐ℎ ⋅ 𝒏 − 𝝈𝟏ℎ ⋅ 𝒏 Γ = 𝒗2ℎ ,𝒇 Ω2  
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MONOLITHIC APPROACH 



Robin – Robin coupling boundary conditions 
 
Advantages of Robin-Robin Coupling boundary conditions 
• The added terms are symmetric. 
• There is no need to modify the original systems with coupling conditions: coupling 

conditions can be added to the system a posteriori (modularity). 
 
Disadvantages of Robin-Robin Coupling conditions 
• Coefficients 𝛼 and 𝛽 need to be chosen, which is not immediate: 

• If the coefficients are too large, the system becomes ill-conditioned. 
• If the coefficients are too small, boundary conditions are not enforced 

strongly enough. 
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MONOLITHIC APPROACH 



Two physics, one domain 
 
Until now we are considering problems in which each coupled problem takes place in 
one subdomain. 
 
Transmission conditions occur only at the interface. 
 
 
 
It is also possible to have two coupled physical problems which take place at the 
same physical domain. 
In this case the coupling is not only through values at the interface, but in the whole 
extension of the computational domain. 
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MONOLITHIC APPROACH 



Thermally coupled flows 
 
In thermally coupled flows, both physical problems take place in the same domain. 
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MONOLITHIC APPROACH 

Fluid equations + Boussinesq coupling: 
𝒗ℎ,𝜕𝑡𝒖ℎ Ω + 𝒗ℎ,𝒖ℎ ⋅ 𝛻𝒖ℎ +  𝜈 𝛻𝒗ℎ,𝛻𝒖ℎ Ω − 𝛻 · 𝒗ℎ,𝑝ℎ Ω + 

𝒗ℎ,𝒏 · 𝑝ℎ Γ − 𝜈 𝒗ℎ,𝒏 ⋅ 𝛻𝒖ℎ Γ = 𝒗ℎ,𝒇 Ω + (𝒗ℎ,𝛼𝒈Δ𝜃) 
𝑞ℎ,𝛻 ⋅ 𝒖ℎ Ω = 0 

Temperature equation (with advection): 
𝑤ℎ, 𝜕𝑡𝜃ℎ 𝛺 + 𝑤ℎ,𝒖ℎ ⋅ 𝛻𝜃ℎ + 𝜅 𝛻𝑤ℎ,𝛻𝜃ℎ 𝛺 + 

−𝜅 𝑤ℎ,𝑛 ⋅ 𝛻𝜃ℎ 𝛤 = 𝑤ℎ, 𝑓 𝛺 
 



Thermally coupled flows 
 
In this case the coupling term for the temperature equation is non-linear. 
 
 
 
 
 
 
 
This makes it impossible to solve the global system in a single step. 
 
It is reasonable to start by solving the temperature equation, and then use  the 
resolved temperature to compute the Boussinesq body forces on the fluid. 
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MONOLITHIC APPROACH 



Advantages of Monolithic approaches 
 

• We solve all the coupled problems in a single step. 
• No convergence or iterative scheme issues. 
• Boundary conditions are applied implicitly in time, the final solution automatically 

satisfies them. 
 

Disadvantages of Monolitihic approaches 
 

• The system of equations to be solved is larger. 
• The system of equations to be solved can be ill-conditioned (involves different 

physical problems, with different consitutive laws and physical parameters). 
• Modularity is difficult to attain: equations for each problem need to be assembled 

in a global matrix. We cannot couple independent pieces of software. 
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MONOLITHIC APPROACH 



Coupling In Time I 52 

PARTITIONED SCHEMES 

 
Motivations for a partitioned scheme 

 
• Customization: Each field can be treated with algorithms which are known to 

perform well for the isolated system. 
• Independent modelling: Partitioned schemes facilitate the use of non-matching 

meshes. 
• Software reuse: Independent pieces of sofware can be used to deal with each of 

the problems. 
• Modularity:  Each physical problem can be packed in a software module, all 

implementations for the particular problem are localized in its module. 
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PARTITIONED SCHEMES 

Let us suppose that we have a time-dependent coupled problem to be solved, which 
we have already discretized in time: 
 

𝑨𝑋𝑿𝑛+1 + 𝑩𝑋𝒀𝑛+1 = 𝑭𝑋 + 𝑪𝑋𝑿𝑛 
𝑨𝑌𝒀𝑛+1 + 𝑩𝑌𝑿𝑛+1 = 𝑭𝑌 + 𝑪𝑌𝒀𝑛 

 
In the monolithic approaches the previous system is solved altogether.  On partitioned 
approaches, we want to iteratively solve systems for only X or Y.  
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Explicit coupling 
 
• Staggered Approach 
We send the off-diagonal terms to the RHS through a prediction: 
 

𝑨𝑋𝑿𝑛+1 = 𝑭𝑋 + 𝑪𝑋𝑿𝑛 − 𝑩𝑋𝒀�𝑛+1 
𝑨𝑌𝒀𝑛+1 = 𝑭𝑌 + 𝑪𝑌𝒀𝑛 − 𝑩𝑌𝑿�𝑛+1 

 
Variables  𝒀�𝑛+1 and 𝑿�𝑛+1 are the predicted values.  
1st  order approximation:  𝒀�𝑛+1= 𝒀𝑛      2nd order Taylor expansion:  𝒀�𝑛+1= 2𝒀𝑛 − 𝒀𝑛−1 

 
• Substitution 
Another possibility consists in solving first for X, and using the resolved variable for the 
solution of the Y equations: 
First we solve for 𝑿𝑛+1 : 

𝑨𝑋𝑿𝑛+1 = 𝑭𝑋 + 𝑪𝑋𝑿𝑛 − 𝑩𝑋𝒀�𝑛+1 
Now we use 𝑿𝑛+1 in the equation for Y: 

𝑨𝑌𝒀𝑛+1 = 𝑭𝑌 + 𝑪𝑌𝒀𝑛 − 𝑩𝑌𝑿𝑛+1 
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Iteration 
The previous procedure can be iterated (with iteration counter i) until convergence. If 
we reach convergence, we recover the solution of the monolithic problem. 
 
While convergence is not reached, iterate (i): 

𝑨𝑋𝑿𝑛+1,𝑖 = 𝑭𝑋 + 𝑪𝑋𝑿𝑛 − 𝑩𝑋𝒀𝑛+1,𝑖−1 
𝑨𝑌𝒀𝑛+1,𝑖 = 𝑭𝑌 + 𝑪𝑌𝒀𝑛 − 𝑩𝑌𝑿𝑛+1,𝑖 

 
Convergence or stability of any of these schemes is not guaranteed! 



Coupling In Time I 56 

PARTITIONED SCHEMES 

Stability for a simplified substitution scheme 
 
Let us consider the algebraic form of a coupled heat transfer problem, discretized with a 
backward Euler scheme: 
 

𝑴𝑋𝑋
𝛿𝑡 + 𝑲𝑋𝑋 𝑲𝑋𝑌

𝑲𝑌𝑋
𝑴𝑌𝑌
𝛿𝑡 + 𝐾𝑌𝑌

𝑼𝑋𝑛+1

𝑼𝑌𝑛+1
=

𝑭𝑋𝑛+1

𝑭𝑌𝑛+1
+

𝑴𝑋𝑋
𝛿𝑡 𝑼𝑋𝑛

𝑴𝑌𝑌
𝛿𝑡 𝑼𝑌𝑛

 

 
Let us simplify this problem by considering: 

a. 𝛿𝑡 is small 
b. 𝑭 = 0 

𝑴𝑋𝑋
𝛿𝑡 𝑲𝑋𝑌

𝑲𝑌𝑋
𝑴𝑌𝑌
𝛿𝑡

𝑼𝑋𝑛+1

𝑼𝑌𝑛+1
=

𝑴𝑋𝑋
𝛿𝑡 𝑼𝑋𝑛

𝑴𝑌𝑌
𝛿𝑡 𝑼𝑌𝑛
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Stability for a simplified substitution scheme 
 
The associated substitution scheme is: 

 
𝑴𝑋𝑋
𝛿𝑡 𝑼𝑋𝑛+1 =

𝑴𝑋𝑋
𝛿𝑡 𝑼𝑋𝑛 − 𝑲𝑋𝑌𝑼𝑌𝑛 

𝑴𝑌𝑌
𝛿𝑡 𝑼𝑌𝑛+1 =

𝑴𝑌𝑌
𝛿𝑡 𝑼𝑌𝑛 − 𝑲𝑌𝑋𝑼𝑋𝑛+1 

Which yields: 
𝑼𝑌𝑛+1 = 𝑼𝑌𝑛 − 𝛿𝑡𝑴𝑌𝑌

−1𝑲𝑋𝑌𝑼𝑋𝑛 − 𝛿𝑡2𝑴𝑌𝑌
−1𝑲𝑋𝑌𝑴𝑋𝑋

−1𝑲𝑌𝑋𝑼𝑌𝑛 
 
Discarding the 𝛿𝑡2 terms, and making the approximation (valid in Neumann-Neumann 
and grid-matching coupling schemes): 

𝑲𝑌𝑋𝑼𝑋𝑛 ≈ 𝑲𝑋𝑌𝑼𝑌𝑛 
 
We have: 

𝑼𝑌𝑛+1 = 𝑼𝑌𝑛 𝑰 − 𝛿𝑡𝑴𝑌𝑌
−1𝑲𝑋𝑌  

 
This scheme is only stable if 𝑰 − 𝛿𝑡𝑴𝑌𝑌

−1𝑲𝑋𝑌 ≤ 1 
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Substepping 
If both problems have different scales in time, it can be convenient to use different time 
steps for each of the coupled problems. 
 
This is specially important if we want to use explicit time integration schemes. The 
limitation in the time step due to stability reasons will define the maximum time step 
size for each problem. 
We solve for 𝑿𝑛+1 with a prediction for 𝒀�𝑛+1: 
 

𝑨𝑋𝑿𝑛+1 = 𝑭𝑋 + 𝑪𝑋𝑿𝑛 − 𝑩𝑋𝒀�𝑛+1 
 
Then we solve for the substeps of 𝒀 using an interpolation 𝑿 at the given substep: 
 

𝑨𝑌𝒀𝑛+𝒊𝒊 = 𝑭𝑌 + 𝑪𝑌𝒀𝑛+(𝑖−1)𝛼 − 𝑩𝑌(𝑿𝑛+1 𝑖𝛼 + 𝑿𝑛 1 − 𝑖𝛼 ) 
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