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We want to deal with the numerical simulation of multiphysics problems: 
• Fluid Dynamics 
• Large deformation solid mechanics 

 
 

INTRODUCTION 



We need to choose the frame of reference in which we write the equations of the 
continuum mechanics. 
 
Classical approaches: 
• Eulerian frame of reference  

The finite element (finite volume,  etc…) mesh doesn’t move. We write the finite 
element equations in a spatial configuration. Fluid mechanics, allows to deal 
with large movements of the continuum. 
 

• Lagrangian frame of reference 
The finite element mesh follows the movement of the material particles. We 
write the finite element equations in a material configuration. Solid mechanics, 
precise interface tracking. 

 
Hybrid approach: 
• Arbitrary Lagrangian-Eulerian Formulation 

Coupling In Time II 3 

INTRODUCTION 
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Some definitions: 
 
• Spatial point: A point which is fixed in space (its position doesn’t change). We 

denote spatial coordinates as: 
𝒙 = 𝑥1𝒆�𝟏 + 𝑥2𝒆�𝟐 + 𝑥3𝒆�𝟑 

 
• Material point: A particle. It can occupy several positions (spatial points) in 

time. We identify a particle by its position at the initial configuration 𝑡0: 
𝑿 = 𝑋1𝒆�𝟏 + 𝑋2𝒆�𝟐 + 𝑋3𝒆�𝟑 

 
 
 
 
 

MATERIAL AND SPATIAL COORDINATES 

• Equations of movement: The equations of 
movement allow us to identify, for a given 
particle X, its spatial position x for each 
time instant t: 

𝒙 = 𝝋 𝑿, 𝑡 ≔ 𝒙(𝑿, 𝑡) 
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Given a property with values varying in space and  time, we can choose to 
describe it as a function of spatial or material coordinates. 
 
Spatial description: 

𝛾 𝒙, 𝑡  
 
Material description:  

Γ 𝑿, 𝑡  
 
Spatial and material descriptions are related through the equations of 
movement: 

𝛾 𝒙, 𝑡 = 𝛾 𝒙(𝑿, 𝑡 ) = Γ(𝑿, 𝑡) 
 
And the inverse equations of movement: 

𝑿 = 𝝋−𝟏 𝒙, 𝑡 = 𝑿(𝒙, 𝑡) 
 

Γ 𝑿, 𝑡 = Γ 𝑿 𝒙, 𝑡 = 𝛾(𝒙, 𝑡) 

MATERIAL AND SPATIAL DESCRIPTIONS OF QUANTITIES OF 
INTEREST 
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Since we have several description of the continuum (material, spatial), there are 
several definitions for the temporal derivatives: 
 
• Local time derivative: Sensitivity of a property with respect to time in a point 

which is fixed in space. If we have the spatial description of a property, the 
local time derivative is defined as:  

𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑙𝑡𝑑𝑑𝑑 ∶=  
𝜕𝛾(𝒙, 𝑡)
𝜕𝑡  

 
• Material time derivative: Sensitivity of a property with respect to time 

following a specific particle (material point) of the continuum. If we have the 
material description of a property, we can define it as: 

𝑚𝑙𝑡𝑑𝑑𝑑𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑙𝑡𝑑𝑑𝑑 ≔
𝑑
𝑑𝑡 Γ =

𝜕Γ(𝐗, t)
𝜕𝑡  

 
Note that the two properties are different and have different meanings: in the 
first one we are focusing in the variation in time of a variable at a fixed point, in 
the second one, we move around the domain following a particle. 

TEMPORAL DERIVATIVES: LOCAL, MATERIAL, CONVECTIVE 
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How do local and material derivatives relate: the convective derivative 
We start by recalling: 

𝛾 𝒙, 𝑡 = 𝛾 𝒙(𝑿, 𝑡 ) = Γ 𝑿, 𝑡  
Then: 

𝑚𝑙𝑡𝑑𝑑𝑑𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑙𝑡𝑑𝑑𝑑 ≔
𝑑
𝑑𝑡
𝛾 𝒙(𝑿, 𝑡 ) =

𝜕Γ 𝐗, t
𝜕𝑡  

 
𝑑
𝑑𝑡 𝛾 𝒙(𝑿, 𝑡 ) =

𝜕𝛾(𝒙, 𝑡)
𝜕𝑡

+
𝜕𝛾(𝒙, 𝑡)
𝜕𝑥𝑖

𝜕𝑥𝑖
𝜕𝑡 =

𝜕𝛾(𝒙, 𝑡)
𝜕𝑡

+
𝜕𝛾
𝜕𝒙

𝜕𝒙
𝜕𝑡 =

𝜕𝛾(𝒙, 𝑡)
𝜕𝑡

+ 𝒗 ⋅ 𝛻𝛾 

 
Where we have taken into account that the velocity is defined as the derivative of the 
equations of movement with respect to time: 
 

𝑑 ≔
𝜕𝒙 𝑿, 𝑡
𝜕𝑡

 

 
These are the material, local and convective derivatives. 
In an Eulerian frame of reference, we use local + convective to express the material 
derivative at a point fixed in space. 
In a Lagrangian frame of reference we use the material derivative: we follow a particle. 
 

TEMPORAL DERIVATIVES: LOCAL, MATERIAL, CONVECTIVE 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

From Donea et al. Arbitrary Lagrangian-Eulerian methods, Enciclopedia of Computational Mechanics 2004. 
 
The advantages are the capability for dealing with large domain movements, while 
keeping a sharp tracking of the interface. 
 
 
 



How do we compute the material derivatives in an arbitrary Lagrangian-Eulerian frame 
of reference 
 
       Lagrangian                                                                                          Eulerian  
       Material derivative                                                                            Local + Convective 
 
 
 
 
 
 
 
 
 
                                                    ALE   
                                                       ? 
From Donea et al. Arbitrary Lagrangian-Eulerian methods, Enciclopedia of Computational Mechanics 2004. 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

The idea is similar to what is done for the Eulerian frame of reference. We start by 
introducing the mesh movement: 

𝒙 = 𝚽 𝓧, 𝑡 = 𝒙 𝓧, 𝑡  
 
For each initial position of the mesh nodes 𝓧, it gives the position 𝒙 of the mesh nodes 
at a given time instant. It traces the movement of the mesh. This allows us to define the 
mesh velocity:  

𝒗𝑀𝑀𝑀𝑀 =
𝜕𝒙 𝓧, 𝑡

𝜕𝑡  

 
which is the derivative of the equations of the mesh movement with respect to time. 
For a Lagrangian frame of reference, ALE coordinates follow the particles: 
 

  𝒙 𝓧, 𝑡 = 𝒙 𝑿, 𝑡     ⇒     𝒗𝑀𝑀𝑀𝑀 = 𝒗 
 
In an Eulerian frame of reference, ALE coordinates are static in space: 
 

  𝒙 𝓧, 𝑡 = 𝒙 𝒙, 𝑡 ⇒     𝒗𝑀𝑀𝑀𝑀 = 𝟎 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

On the other hand,  we can define the mapping between ALE domain and the material 
domain as: 

𝑿 = 𝚿 𝓧, 𝑡 = 𝑿 𝓧, 𝑡  
 
It is convenient, however, to define also the inverse mapping, which transforms material 
coordinates into coordinates in the ALE reference system: 
 

𝓧 = 𝚿−𝟏 𝑿, 𝑡 = 𝓧 𝑿, 𝑡  
 
Referred to this mapping, we define the velocity: 
 

𝒘 =
𝜕𝓧 𝑿, 𝑡

𝜕𝑡 =
𝜕𝚿−𝟏 𝑿, 𝑡

𝜕𝑡  

Now, we recall that 𝝋 = 𝚽°𝚿−𝟏 
𝜕𝝋 𝑿, 𝑡

𝜕𝑡 =
𝜕𝚽(𝚿−𝟏 𝑿, 𝑡 , 𝑡)

𝜕𝑡 =
𝜕𝚽(𝓧, 𝑡)

𝜕𝑡 +
𝜕𝚽(𝓧, 𝑡)
𝜕𝓧

𝜕𝚿−𝟏(𝑿, 𝑡)
𝜕𝑡 ⇒ 

 

𝒗 = 𝒗𝑀𝑀𝑀𝑀 +
𝜕𝒙
𝜕𝓧 ⋅ 𝒘 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

 
Let us now consider the description of a property in the ALE frame of reference: 

𝛾𝐴𝐴𝑀(𝓧(𝑿, 𝑡), 𝑡) 
and its material derivative: 

𝑚𝑙𝑡𝑑𝑑𝑑𝑙𝑙 𝑑𝑑𝑑𝑑𝑑𝑙𝑡𝑑𝑑𝑑 ≔
𝑑
𝑑𝑡 𝛾𝐴𝐴𝑀(𝓧(𝑿, 𝑡)) =

𝜕Γ 𝐗, t
𝜕𝑡

 

 
𝑑
𝑑𝑡 𝛾𝐴𝐴𝑀 𝓧 𝑿, 𝑡 , 𝑡 =

𝜕𝛾𝐴𝐴𝑀 𝓧, 𝑡
𝜕𝑡 +

𝜕𝛾𝐴𝐴𝑀
𝜕𝓧 ⋅ 𝒘 =

𝜕𝛾𝐴𝐴𝑀 𝓧, 𝑡
𝜕𝑡 +

𝜕𝛾
𝜕𝒙

𝜕𝒙
𝜕𝓧 ⋅ 𝒘 

=
𝜕𝛾𝐴𝐴𝑀 𝓧, 𝑡

𝜕𝑡 + 𝒗 − 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝛻𝛾(𝒙, 𝑡) 

The first term is evaluated at the mesh points: 
𝜕𝛾𝐴𝐴𝑀 𝓧, 𝑡

𝜕𝑡  

If we discretize in time, we can compute this time derivative as the difference between 
values of the property at the moving mesh nodes 
The second term is evaluated at the spatial coordinates. 

𝒗 − 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝛻𝛾 𝒙, 𝑡 = 𝒄 ⋅ 𝛻𝛾 𝒙, 𝑡  
We can integrate it over the deformed mesh. 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

Conservation equations in ALE form 
 
Mass balance equation: 
 

𝜕𝜌𝐴𝐴𝑀 𝓧, 𝑡
𝜕𝑡

+ 𝒄 ⋅ 𝛻𝜌 𝒙, 𝑡 = −𝜌𝛻 ⋅ 𝒖(𝒙, 𝑡) 

 
Momentum conservation equation: 
 

𝜕𝒖𝐴𝐴𝑀 𝓧, 𝑡
𝜕𝑡 + 𝒄 ⋅ 𝛻𝒖 𝒙, 𝑡 = 𝛻 ⋅ 𝝈 𝒙, 𝑡 + 𝜌 𝒙, 𝑡 𝒃 𝒙, 𝑡  

 
Energy conservation equation: 
 

𝜌 𝒙, 𝑡
𝜕𝐸𝐴𝐴𝑀 𝓧, 𝑡

𝜕𝑡 + 𝒄 ⋅ 𝛻𝐸 𝒙, 𝑡 = 𝛻 ⋅ 𝝈 𝒙, 𝑡 ⋅ 𝒖 𝒙, 𝑡 + 𝒖 𝒙, 𝑡 ⋅ 𝜌 𝒙, 𝑡 𝒃(𝒙, 𝑡) 
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

Integral form of ALE conservation equations 
 
The Reynolds transport theorem applied to an arbitrary volume (not a control volume, 
nor a material volume), which moves with velocity 𝒗𝑀𝑀𝑀𝑀 is: 

𝜕
𝜕𝑡 �𝓧

� 𝑓 𝓧, 𝑡 𝑑𝑑 =
𝑉𝑡

�
𝜕
𝜕𝑡
𝑓 𝒙, 𝑡 𝑑𝑑 +

𝑉𝑡
� 𝑓 𝒙, 𝑡 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝒏𝑑𝑑
𝜕𝑉

 

Setting 𝑓 = 𝜌 we get: 
𝜕
𝜕𝑡
�
𝓧
� 𝜌 𝓧, 𝑡 𝑑𝑑 =
𝑉𝑡

�
𝜕
𝜕𝑡 𝜌 𝒙, 𝑡 𝑑𝑑 +

𝑉𝑡
� 𝜌 𝒙, 𝑡 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝒏𝑑𝑑
𝜕𝑉

= 

= −� 𝛻 ⋅ 𝜌 𝒙, 𝑡 𝒖 𝒙, 𝑡 𝑑𝑑 + 
𝑉𝑡

� 𝜌 𝒙, 𝑡 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝒏𝑑𝑑
𝜕𝑉

= 

� 𝜌 𝒙, 𝑡 (𝒗𝑀𝑀𝑀𝑀−𝒗) ⋅ 𝒏𝑑𝑑 = −
𝜕𝑉

� 𝜌 𝒙, 𝑡 𝒄 ⋅ 𝒏𝑑𝑑
𝜕𝑉

 

 
𝜕
𝜕𝑡 �𝓧

� 𝜌 𝓧, 𝑡 𝑑𝑑 + � 𝜌 𝒙, 𝑡 𝒄 ⋅ 𝒏𝑑𝑑
𝜕𝑉

= 0
𝑉𝑡
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A HYBRID APPROACH: ARBITRARY LAGRANGIAN-EULERIAN 
FRAME OF REFERENCE 

Integral form of ALE conservation equations 
 
We can do the same for the momentum and energy balance equations: 
 
Momentum balance equation: 
 
𝜕
𝜕𝑡
�
𝒳
� 𝜌𝒖(
𝑉𝑡

𝓧, 𝑡)𝑑𝑑 + � 𝜌 𝒙, 𝑡 𝒖 𝒙, 𝑡 𝒄 ⋅ 𝒏𝑑𝑑 = � 𝛻 ⋅ 𝝈 𝒙, 𝒕 + 𝝆 𝒙, 𝑡 𝒃 𝒙, 𝑡 𝑑𝑑 
𝑉𝑡𝜕𝑉

 

 
Energy balance equation: 
 

𝜕
𝜕𝑡 �𝒳

� 𝜌𝐸(
𝑉𝑡

𝓧, 𝑡)𝑑𝑑 + � 𝜌 𝒙, 𝑡 𝐸 𝒙, 𝑡 𝒄 ⋅ 𝒏𝑑𝑑
𝜕𝑉

= � 𝛻 ⋅ (𝝈 𝒙, 𝒕 ⋅ 𝒖(𝒙, 𝑡) +⋅ 𝒖(𝒙, 𝑡)𝝆 𝒙, 𝑡 𝒃 𝒙, 𝑡 𝑑𝑑 
𝑉𝑡
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MESH MOVEMENT 
We do already have a formulation which allows us  to write the continuum 
mechanics equations in a frame of reference which evolves in time (ALE frame of 
reference. 
 
The definition of the mesh movement 
The mesh movement must fulfill the following requirements: 
 
• In some boundaries of the domain, it must follow the movement of the 

particles in the boundaries (Lagrangian boundary) 
 

• In some boundaries of the domain, it must remain static (Eulerian boundary) 
 

• In the interior of the domain, the mesh movement must be such that the 
shapes of the elements do not get excessively distorted (avoid and increase of 
the numerical approximation error). 

 
The movement in the Lagrangian boundary can be prescribed a priori, or it can be 
the result of a couple problem computation (Fluid-structure interaction, free 
surface flows). 
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MESH MOVEMENT 
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MESH MOVEMENT 
There are several possibilities for computing the mesh displacements 
 
The boundary conditions are: 

𝒅𝑀𝑀𝑀𝑀 = 𝒅𝐴      𝑑𝑖 Γ𝐴𝐴𝐿𝐿𝐴𝐿𝐿𝐿𝐴𝐿 
 

𝒅𝑀𝑀𝑀𝑀 = 𝟎         𝑑𝑖 Γ𝑀𝐸𝐴𝑀𝐿𝐿𝐴𝐿 
 
In the interior of the domain, various problems can be solved. For instance: 
Poisson problem: 

−Δ𝒅 = 𝟎    𝑑𝑖 Ω 
 
An Elasticity problem: 
 

𝑲𝒅 = 𝟎    𝑑𝑖 Ω 
 
Different properties can be assigned to different areas of the domain. The 
objective is always to avoid mesh distortion, because the error of the finite 
element analysis is related to the shape of the elements. 
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MESH MOVEMENT 
Geometric conservation law 
The geometric conservation law responds to the requirement that the ALE 
formulation must be capable of solving the problem of a uniform flow. 
 
Departing from the mass balance, and assuming uniform velocity and density 
distribution, we arrive to: 
 

𝜕
𝜕𝑡 �𝓧

� 𝑑𝑑 + � 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝒏𝑑𝑑
𝜕𝑉

= 0
𝑉𝑡

 

 
If we integrate this in time, and we focus in each element in step n to step n+1: 

Ω𝑒𝑛+1 − Ω𝑒𝑛 = � � 𝒗𝑀𝑀𝑀𝑀 ⋅ 𝒏𝑑𝑑
𝜕𝑉

𝑑𝑡
𝑡𝑛+1

𝑡𝑛
 

 
This imposes some restrictions to the update procedure for grid position and 
velocity. For first order time integrators: 
 

𝒗𝑀𝑀𝑀𝑀
𝑛+1/2 = (𝑑𝑀𝑀𝑀𝑀𝑛+1 −𝑑𝑀𝑀𝑀𝑀𝑛 )/𝛿𝑡 
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MESH MOVEMENT 
Geometric conservation law 
Particularly, for fluid structure interaction, this would mean that a coupled 
problem with 3 unknowns needs to be solved: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Usually this can be expensive and a semiexplicit partitioned scheme (no geometric 
conservation law!) is adopted. 
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MESH MOVEMENT 
However, it is not always possible to avoid mesh distorsion, if displacements are 
too large: 
 
 
 
 
 
 
 
 
 
 
 
 
In this case it is necessary to remesh after a number of time steps.  
 
After remeshing, all the results need to be projected onto the new mesh. 
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MESH ADAPTIVITY 
ALE formulations can also be used to obtain mesh adaptivity, even if the physical 
domain does not evolve in time. 
 
It allows to concentrate more elements in areas where the error is larger (an error 
estimator is required). 
 
 
 
 
 
 
 
 
 
From Donea et al. Arbitrary Lagrangian-Eulerian methods, Enciclopedia of Computational Mechanics 
2004. 
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