
Computational Mechanics Tools

PDE tool HW

Aren Khaloian

December 13 2019

Using the Matlab PDEtool for solving a PDE

MSc in Numerical methods for engineering

Objective:

The objective of the assignment is to find the answer for the given PDE
equation using the Matlab PDEtool, for the given boundary conditions and
t=10s and by refining the mesh used in the PDEtool compare the answers
and see the convergence of the answers to the analytical solution.

Fig1. The equation and the boundary conditions

We can see that we have a parabolic PDE with three Newman and one
Dirichelet boundary conditions and the initial condition for the equation is
given. The boundary is a square of 1 by 1.

Solution:

We start the problem by defining the equation and the boundary and
initial conditions in PDEtool in Matlab and meshing the boundary so we can
export the node coordinates,the connectivity matrix and the solution for each
node. Afterwards we modify the error and convergence codes so we can
evaluate the error of our numerical solution with the analytical one and
plotting the error by the mesh size to evaluate the convergence of the
numerical methods when we refine the mesh.

The defining of the equation in PDEtool:

Fig2. The geometry and the equation

As said the geometry, equation and the boundary conditions are defined
in PDEtool. We have 3 Newman and 1 Dirichelet (at y=0) boundary
conditions.

As for the meshes, they were refined 4 times and the error was
calculated for all 5 of the cases.

The Error and the convergence codes:

Fig3. The codes for calculating the error and convergence

The code for calculating the maximum error starts by saving all the X
and Y coordinates of the nodes form the p matrix that we have exported from
the PDEtool. Afterwards it calculates the analytical solution for each of the
nodes at t=10s. The maximum error is found from the difference of the
exported PDEtool solution and the analytical one.

The maximum error for each of the meshes is saved into a matrix called
err in the convergence code and the mesh size is calculated using the area of
our domain (in this case 1x1) and the number of elements which is extracted
from the connectivity matrix. The plot of the error and the mesh size for 4 time
mesh refining is shown below:

Fig4. Plot for the error and average mesh size for t=10s

For the second question if we plot the average of the solution for every
second we can see that after about 4 seconds the plot turns into a line this
means that the variation in our solutions doesn’t change noticeably by time.
this means that the problem has become steady state. So as we modify the
final time if its after the 4th second we won’t see much difference in our
solutions.

Fig5. The plot for the average of the solution by time

For the third case discussed, because e^-50 is very small we can
consider it to be zero. So every term in our equation, boundary condition and
initial condition that has e^-t we can neglect so basically the f term of our
equation will be zero and the time dependent term in the boundary condition
will disappear. From the second question we know that after about 4 seconds
our solutions don’t vary with time and the system becomes steady state so
after 50 seconds we can consider the system as steady state and neglect the
time dependable variable in the equation and change it form parabolic to
elliptic so the equation will become much simpler to solve and the
computational cost will be less. When we run the PDEtool for both the elliptic
and parabolic cases, we see that for the elliptic case the CPU time is
271.4900 and for the parabolic case is 281.9900 so we benefit from the
simplification.

