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1. The problem is solved using the MATLAB PDE toolbox and following the steps of the example made
in class. Once the geometry is drawn, the heat PDE is defined (Parabolic PDE) and are imposed
the boundary conditions given by the statement; the problem is defined. As the class example was
time-independent, in this case we have to add the initial conditions using Solve > Solve PDE. The
solution of the problem is the following:
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Figure 1: Temperature distribution at te,q = 10 with mesh size h = 0, 1.
Now it is time to refine the mesh, and is done changing the maximum edge size with Mesh >
Parameters. The problem is solved with mesh sizes 0,1, 0,05, 0,025 and 0,0125. With every
solution the mesh is exported to MATLAB with Mesh > Export Mesh... and the temperatures
with Solve > Export Solution.... Now using the given errorExamplel.m file, the error is
computed compared to the analytic solution, given by the statement. Then, the error is plotted with
different mesh sizes using the convergenceExamplel .m file:
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Figure 2: Log-log plot of error vs mesh size.
It is observed that the logarithm of the error follows a straight that depends on mesh size, so the error
obtained is bounded, as the convergence theory explains. In this case, using the linear regression of
the data on Figure 2, is obtained that the error, for little mesh sizes, behaves as |le|| &~ C h*7192 that
is the boundary of the error.



2. In this case, simulation time is changed with Solve > Parameters... and is used a time step of
1 to use the solution of t.,q = 10 to get the solution at time ¢ = 1 and has been used a mesh of size
h = 0,025 because in the previous section the solution with A = 0,0125 had really large computing
time. The solution is shown in Figure 3:
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Figure 3: Temperature distribution at t.,q = 1 with mesh size h = 0, 025.
The temperature distribution is similar to Figure 1 but, as seen in the legend, are reached higher
temperatures. At tepg = 1 the maximum error is 1,40 x 1073 and at ten,q = 10 is 6,05 x 1074, one
order of magnitude lower. The error at little times is bigger because the solution does not have enough
time to convergence to the solution from the initial condition. To discuss it deeply, the error is taken
for more times with time step At = 0,01 and is plotted in Figure 4:
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Figure 4: Maximum error vs time.
The error obtained depends on time and converges to the value at t.,q = 10 with the maximum norm.
This dependence is not smooth but does not change if we refine the time mesh. This is because the norm
expression used in errorExamplel . m uses the maximum function and the absolute value of the error
so, maybe, the point with maximum errors is jumping through the mesh along time. Consequently,
the evolution of maximum error is continuous but is not smooth. Also is observed that the error does
not converge to zero, we should refine the mesh if our tolerance is lower than 6,05 x 1074,



3. At time t.,q = 50, e °° = 0 so the problem is time-independent and can redefine it as:

—Au=0 inQ=1]0,1]?

Uy = —Y inx=0
U, =2+y inzx=1
Uy = 2 iny=20

U, = —2 iny=1

Then, instead of solving a parabolic PDE, we have to solve an elliptic PDE. We have to change the
PDE PDE > PDE Specification... and the boundary conditions that now does not depend on
time. The analytic solution neither depends on time now. The solution of the stationary problem is
the following:
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Figure 5: Stationary solution with mesh size h = 0, 025.
While the transient problem solves an elliptic problem at each time step, the stationary problem must
be computed only once, saving a lot of computational time. To compare this solution, the transient
problem is also solved. In both cases a maximum error of 0,6047 x 103 is obtained.



