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1 Introduction

When a train is travelling, it often emits highly audible noise between 2 and 8 kHZ,
known as squeal, which is generated by the train wheel during its rotation. The noise
can be quite annoying to nearby residents. There is a range of sources for the squeal.
It can be generated when a rail car negotiates a curve of short radius, which is called
"Curve squeal". During a curve passage, some wheels rub with the flange against the
rail, causing the intense tonal noise. Other wheels, (for example, leading inner wheel
of a bogie) perform lateral creepage because the wheel movement does no align with
the rolling direction|[1]. The creepage can show unstable stick-slip behavior, causing
the wheel to oscillate and radiate loud annoying noise. Apart from it, there is also
longitudinal stick-slip which is caused by the different translation velocities between
the inner and outer rails|2]. When a bogie traverses a curve the outer wheel must
travel a greater distance than the inner one. For a solid axle this differential distance
implies the possibility of one wheel sliding or creeping longitudinally on the rail.
Squeal noise generation during braking is also a complicated problem for automobile
manufacturers. This brake noise is perceived by customers as both annoying and
an indication of a problem with the brake system|[3|. The resonance phenomena is
another source of squeal. It might happen when the wheel eigenfrequencies and the
frequency of the wheel due to its rotation couple with each other or the frequency
of the sleepers (transversal beams that support the rails) is around the natural
frequencies of the wheel.

In this project, the author takes into consideration last two mechanisms of the
wheel squeal: (i) the coupling between wheel eigenfrequencies and the frequency of
wheel rotation, (ii) the coupling between wheel eigenfrequencies and the frequency
of sleepers. It is aimed at checking whether the squeal noise will be generated when
the train is traveling at the speed of 350 km/h and with the sleepers located every
60 ¢cm. The dynamic analysis is done with a simple model of the steel wheel. Abaqus
was firstly tried in order to compute the natural frequencies of the wheel. However,
due to the low performance with the limited number of elements in Abaqus, other
engineering softwares are applied in the project such as Kratos and Ansys. The
author also did simulation with a more realistic model of the train wheel to see
whether there is potential squeal problem for this wheel.



2 Problem Statement

In this project, two problems are dealt with:

(1)If the train travels at a maximum speed of 350 km/h, will the rotation of the
wheel is coupled with the squeal problem?

(ii) If the sleepers are located every 60 cm, may the positions of the sleepers be
coupled with the squeal phenomena?

The eigenfrequency analysis is done with both, a simple geometry of the wheel
and a more realistic one. The geometry is generated as a three dimensional disc
with the dimensions indicated in Figure 1. The material is assumed linearly elastic,
with the material properties given also in Figure 1. A more realistic model is shown
in Figure 2.
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Width ¢ [m] | 0.05
Internal diameter d [m] 0.10
External diameter D [m] 1.00

D Density p [Kg/m3] | 7800
Yong Modulus E [Pa] 210E9
Poisson Ratio v [] 0.25

y

Figure 1: Simple geometry of the wheel

Figure 2: Realistic geometry of a wheel



3 Methodology

The process followed to obtain the dynamic analysis of the train wheel was in first
instance to create a simplified model as described in the problem statement. The
model was analysed and results were obtained for both, its eigen-frequencies and its
corresponding critical velocities.

However, the simulation with Abaqus didn’t give us reasonable results as the
available number of elements is too small. When changing the element size, the
results varied disproportionately. As a consequence, other engineering softwares
such as Ansys and Kratos were employed to perform a mesh sensitivity test on the
model. Using the mesh under the converged solution, the critical velocities were
obtained again. In this project, we consider two parameters which contribute to
to the squeal problem, the frequency of the wheel’s rotation and the frequency of
passing by the sleepers.

The frequency of the wheels own rotation is calculated by

f=v/(2xpix*R)
where v is the velocity of the train and R is the radius of the wheel.

The second one is calculated by

f=v/D
where D is the distance of the sleepers.

The velocity that matches any of the natural frequencies of the wheel is defined
as a critical velocity.

In the following sections, a discussion of the simulations is presented. Since the
critical velocities found for the model of diameter 1m was close to the maximum
velocity of 350 km/h, a series of simulations were performed in order to suggest
improvements in the geometry that might lead to avoiding any resonance problem.
For this, two new external diameters were tested to verify the correct direction of
optimizing the model. An enlarged model with a diameter of 1.2 m and a model
with a diameter of 0.8 m.

Finally, a series of simulations using a realistic model were undertaken. The
realistic model has similar dimensions as the first proposed model in the problem
statement, so it can offer a grasp of a realistic wheel of those dimensions. By
comparing the results with the simplified model, we can see how efficient it is to
analyse it with a simple circular plate.

The boundary conditions applied to the models are the same. These are applied
on the inner area (where a shaft would be located), and on a line over the outer
area (where the contact with the rail would occur). All the degrees of freedom are
restricted on these parts of the model, as shown in Figure 3.



Figure 3: Boundary conditions applied to the models



4 Simulation with simplified geometry

4.1 Mesh Sensitivity

The first simulation is carried out with the simple geometry and recommended mesh
in the assignment (Discretize the wheel geometry with hexahedra finite elements and
using "Approximate global size” equal to 0.05). Here the type of element is set to
be linear. The following plots were obtained for the first four deformation modes.
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Figure 4: Modal deformation Abaqus

However, when reducing the size of the radius, it can be observed that the eigen-
frecuencies increased disproportionally when the radius is around 0.3m. This is due
to the fact that we reduce the element size when decreasing the size of diameter, so
the first results were not accurate as the mesh is not fine enough. Notwithstanding, it
was not possible to test the mesh sensitivity using Abaqus student version because
of the limitation of 1000 nodes. A more accurate result can be obtained with p
refinement. Therefore, another simulation with quadratic elements is done with
Abaqus. Figure 6 shows that Abaqus Model using quadratic elements performed
well even with a very coarse mesh while the Abaqus model using linear elements is
totally out of range.
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Figure 5: Mode 1 with a coarse quadratic mesh. Abaqus



In order to obtain accurate results from simulations, it is of great interest to do
mesh sensitivity. The decision was taken then to use other softwares which allow
a larger amount of nodes, in order to do the mesh sensitivity analysis and find the
converged results. The softwares selected were Ansys, which in its academic version
allows to use up to 32K nodes; and Kratos, which is open source, and therefore does
not state a specific limit for the number of nodes. The same procedure explained
in Methodology was followed, including the specification of the material properties,
the geometry domain, and the boundary conditions. Besides the amount of nodes,
the degree of the elements is a factor to consider. Ansys by default meshes using
quadratic elements. Kratos also allows the usage of quadratic elements. The results
are also compared with those from Abaqus with limited number of elements. Figure
7 shows that the first natural frequency of the model converges to a value of around
165 Hz for both Kratos and Ansys. One can also see from Figure 7 that Abaqus
model with quadratic elements is off by around 7 Hz, which is remarkable taking
into consideration the coarse mesh employed, and highlights the efficiency of using
higher order elements.
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Figure 6: Convergence study for all element types

Figures 8 and 9 demonstrate the corresponding first four deformation modes
in Ansys and Kratos with the finest meshes. It can be observed that the results
differ greatly from the ones obtained with Abaqus using linear elements (As by the
indications of the project statement). One detail that can be easily noticed is that
the deformation for modes 1 and 2 get switched for a converged solution in contrast
with the Abaqus solution.



Convergence study quadratic meshes
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Figure 9: Modal deformation Kratos

4.2 Critical Velocities

The converged model in Kratos gave the natural frequencies shown in table 1. In
Figure 10, the green lines are the first four natural frequencies. The critical veloci-
ties are found at the cross point between the natural frequency and the frequency of
the wheel passing by the sleepers or the frequency of the rotation. The first critical
velocity happens due to the distance of sleepers. It is around 350km/h. Since the
maximum velocity of the train is 350 km/h, there might be a problem of resonance
because it is too close to the first natural frequency. As for the other critical ve-
locities, it is not of interest since they are much larger than the highest velocity. A
study will be done in the following section to test whether a change of radius would
have an effect on the simplified geometry, in order to allow for the velocity of 350
km/h to be reached without generating squeals.

Mode f v
1 164.75 | 356.40
2 186.41 | 401.76
3 237.79 | 511.92
4 288.12 | 622.08
5 478.85 -
6 624.31 -
7 669.17 -
8 819.54 -
9 1066.13 -
10 1122.04 -

Table 1: Eigen frequencies of the simple model
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Figure 10: Critical velocity of simplified model

4.3 Optimization of the wheel

From the previous section, two options exist for the software to study the natural
frequency of the wheel model. In this section, only Ansys will be used; as it provides
a simpler way of modifying the geometries. The main objective in this section is to
determine whether a wheel of different radius would allow for the maximum velocity
of 350 km/h to be reached, without a problem of resonance.

Two new radius were tested. Both with a difference of 20% with respect to the
original diameter of 1m, that is, the model with enlarged diameter is 1.2 m and
the model with reduced diameter is 0.8 m. Both models keep the inner diameter
of 0.1m. Figure 11 and Figure 12 show that the changes in the diameter do have
influence on the critical velocities but the frequency of the train passing by the
sleeper dominates. Therefore, in order to reach 350km/h, it is necessary to decrease
the slope of the blue line in the figure i.e. increase the distance between sleepers so
that the train can never reach the critical velocity.

Mode | f (R=0.4m) | v (R=0.4) | f (R=0.6) | v (R = 0.6m)
1 484.74 1047 196.85 425.32
2 553.65 1196 235.05 507.72
3 705.01 1523 312.77 675.62
4 854.43 1846 386.82 835.83
5) 925.3 - 551.86 -

6 1294.3 - 621.49 -
7 1756.6 - 833.26 -
8 1835.8 - 1038.1 -
9 2069.8 - 1119.3 -
10 2100.5 - 1255.2 -

Table 2: Eigen Frequencies for wheel with different radius
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Figure 11: Critical velocities for wheel R=0.4
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Figure 12: Critical velocities for wheel R=0.6

Both changes in the diameter of the wheel have the desired effect to raise the
natural frequency. However, there is a limit on how much one can modify this
simplified geometry to obtain reasonable results. For example, another geometry
was attempted with a diameter of 1.6 m. The model can be seen in figure 13.
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Figure 13: Super enlarged diameter model. Outer diameter 1.6m

For the super enlarged diameter model, the first natural frequency is 104 Hz,
which is a frequency that can be reached during the operation of the train as shown
by Figure 10, and Figure 11; no doubt this is a poor performance. But more impor-
tantly, the ratio of diameters is too large, and this does not reassemble a wheel one
can encounter in operation.

Then it was clear the need to see how a more realistic model would perform.
Next section studies exactly that.
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5 Simulation with realistic model

The simulation of a real train wheel is considered in this section. The objective is to
find the eigen-frequencies, not of a simplified model, but of a real model of similar
dimensions as the one proposed in the problem statement. The software used will
be Ansys, because of its large limit size for the models, and its tools to modify
geometries.

This will be performed in the following way:

Obtain a real model of similar dimensions

Apply boundary conditions and mesh

Undertake a mesh sensitivity test

Obtain the eigen-frequencies of the real model

Obtain the critical velocities

The CAD model was obtained from the internet, from the website GrabCAD us-
ing a workbench account (https://grabcad.com/library/train-wheel-1). This
CAD model was transformed to the format Ansys supports, which is a .xt extension.
The dimensions of this model is shown in Figure 14. As can be seen, the external
radius is 1m. Which matches with the original geometry of the problem statement.
Moreover, the inner radius is about double of the original simplified model. The
thickness is also different.

ANSYS

R19.2
_Academic

Figure 14: Real geometry dimensions

Boundary conditions are once again imposed as restricted displacement over the
inner area of the wheel and also over the line where the contact zone would exist.
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Figure 15: Fixed Supports for the Realistic Geometry

Again mesh sensitivity is done for the real model as is shown in Figure 16.
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Figure 16: Mesh sensitivity study in Real Wheel

The modes calculated by the finest mesh are illustrated in Figure 17 and more
details can be found in Table 17. The deformations of the first four mode are similar
to those of the simplified model. The natural frequencies found are not so large,
and that means that the critical velocities will be incurred during the operation of
the train. From Table 17 we can see that the first critical velocity is 310km/h and
the second around 380 km /h. There is high possibility that the wheel squeals when
travelling.
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Table 3: Eigen-frequencies for the real geometry
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Figure 18: Critical velocities for the real model
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6 Conclusion and future work
After the present study, the following conclusions were achieved:

e Both the simple and real models of the wheel would generate squeal, as they
both have natural frequencies that would be reached during the operation of
the train.

e Studies were performed on modified versions of the simplified geometry to
check whether changing the diameter can have a positive effect on its natural
frequency. The results show that slight variations on the outer radius can
potentially be beneficial to avoid squeal. However, more work is to be done on
the optimization of the design, using realistic modified geometries with refined
enough meshes.

e Other sources of squeal can be studied and simulated, which would require
much more computational power and a more sophisticated modelation to be
able to capture contact, lateral creepage, among other phenomena.

e From the analysis of critical velocities, it is clear that the distance between
sleepers is dominating the squeal problem, not the rotation of the wheel. An-
other possible improvement is to change the distance between the sleepers for
new railways, and whenever possible.
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Division of the tasks

The tasks are divided as follows:

e The simulation under ANSYS and ABAQUS was done by Raul and that under
KRATOS was done by Shushu.

e The report was written cooperatively. Shushu did the part of critical velocities
and introduction. Bravo did the part of simulation and conclusion.

e The presentation was also done cooperatively. Shushu created the framework
and insert the pictures and Bravo helped to put relevant information and
comment inside.
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