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1. Introduction

The ground source heat pump is a clean technology to heat
houses taking the heat from the soil. Indeed, at a certain
depth the temperature stays constant. The principle is to
dig in the soil and make a fluid flows from the house to
the soil. In order to avoid extra digging, one method is to
use the foundation pile as a heat exchanger.
This pile is then submitted to many constraints, like the
structure load, its self-weight, the inner water pressure, the
earth pressure, and the temperature effect.
We want to make sure our structure is reliable, so we’ll
perform a computational analysis.

Figure 1: Heat exhanger

2. Problem statement
Our problem is a coaxial heat exchanger constituted of two
tubes.

• The inner tube is a steel one where the water flows.
Here we consider the inner temperature at 50°C.
Hydrostatic pressure is applied on the inner surface
of this tube.

• The outer tube is a concrete pile. It is in contact
with the soil where the temperature is 30°C. An earth
pressure is applied on the outer surface of this tube.

The concrete part is submitted to the structure load. We
want to study a cylindrical 1m section of this whole pile,
situated in 20m depth.

Figure 2: Top view
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3. Methodology
In this section, we will model our problem in order to study its response to the mechanical and
thermal conditions. We will use the Finite element software Abaqus to perform the modelling
and analysis.

3.1. Model
3.1.1. Geometry

• Modelling space: We choose to represent our cylindrical section in an axisymmetric plane.
This has many advantages comparing to a 3D Cartesian modelling. The model is simplified
to a 2D model, which makes the meshing easier, the number of needed elements lower, and
the computation faster and more accurate than a 3D model.
Thus our geometrical model in an axisymmetrical plane looks like one small rectangle on
the left, representing the inner steel tube, and a bigger rectangle on the right representing
the concrete tube.

• Material: A table of materials properties is given. As we consider small displacements, we
do not consider plastic effects, then we set only an isotropic elastic behavior.

• Mesh: We choose to mesh both parts with quadratic elements. We define then the element
type in Abaqus, and we mesh the model with the maximum nodes numbers allowed by the
student version software, i.e. 1000 nodes. The two types of elements used are
– CAX4R: A 4-node bilinear axisymmetric quadrilateral, reduced integration,

hourglass control

– CAX4T: A 4-node axisymmetric thermally coupled quadrilateral, bilinear displacement
and temperature.

3.1.2. Loads

• Hydrostatic
Hydrostatic loads have to be applied on each side of the geometry in order to simulate
the behavior of a perpendicular pressure increasing with the depth. The internal pressure
generated by the water is applied on the inside of the steel ring and the external lateral
pressure is induced by the ground on the concrete exterior annulus.

The calculus computing those values can be interpreted for the axisymmetric geometry, the
3D axis is not taken into consideration. The calculus here are to define the hydrostatic
pressure at the top of the section at h = 19.5m

Pw = h ρw g (1)
Pg = h ρg g K0 (2)

Where K0 is the relationship between the pile ground weight and the lateral pressure
induced. Using the friction angle given,

K0 = 1 − sinΨ = 0.5 (3)
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3.1 Model

Since 2ρw = ρg, the pressures are at equilibrium, and more specifically their value at the
top of the section

P up
w = P up

g = 191 295 [Pa]

Two parameters are needed in order to simulate these hydrostatic pressures : the coordinate
of the point on the Z axis corresponding to the zero pressure and the coordinate of the point
corresponding to the reference pressure computed. The values of these variables depend on
the way the parts are modeled in the software.

• Structure load
The concrete part of the pile is submitted to a 300kN force. As the model is axisymmetric,
we compute the equivalent pressure on the top edge as it follows

Pstructure = F

r2π
= 300.103

0.32π
= 1 061 033 [Pa]

• Self weight
The section we study is located in 19.5 meters depth and it is submitted to the weight of
the upper part. We compute it in term of pressure the following way

PS.W. concrete = F

S
= mc g

r2π
= ρc V g

r2π
= ρc h g = 478 237.5 [Pa]

PS.W. steel = F

S
= ms g

r2π
= ρs V g

r2π
= ρs h g = 1 492 101 [Pa]

• Reactive load
In order to stabilize the structure, we set a reactive load on the bottom edge. It has to be
equal to the force applied on the top edge, plus the self weight of the section, which is

Psteel react = Psteel + PS.W. steel section = 1 568 619 [Pa]

Pconc react = Pconc + PS.W. conc section = 1 563 795 [Pa]

• Gravity
Although it has been implied in the self weight section, the action of gravity in the simulation
is a requirement. Gravity is thus applied on the whole geometry in order for the reactive
loads to be appropriate.

3.1.3. Boundary conditions

• Structural
On the boundary of the domain, the displacements are allowed in all direction. This
mathematically modelled as a natural condition (Neumann) which is implicit in Abaqus.
Physically, the model is not supposed to move as we set a reaction pressure on the bottom
edge. But the numerical model might be unstable as the top pressure and the reaction
pressure might not be exactly the same, due to some ε truncature errors. This may cause a
displacement artifact which makes the solution inaccurate. To avoid it, Abaqus asks for a
minimal essential boundary condition (Dirichlet).
The easiest way to implement is to encastre one single node for each material if not tied
together. The best way would be to set it at the center of the model to respect the symmetry
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3.1 Model

of the problem, but this hard to implement, especially as we’ll modify the mesh in further
work.
So finally, we fixed the horizontal displacement (U2) and rotation (UR3) on the bottom left
of the steel part as the two materials are tied together.

• Temperature
The temperature is imposed on the sides of the model due to the flow of hot water (50◦C)
and the constant earth temperature (30◦C). Using those units results in using coherent units
to describe the variables related : the thermal expansion coefficient, thermal conductivity
and the specific heat[EngineeringToolbox, 2003] (not given in the instructions).

cpsteel = 490 [J kg−1 ◦C−1]
cpconcrete = 880 [J kg−1 ◦C−1]

3.1.4. Interaction

Because we have two different parts, an interaction can happen and a contact model has to be
set. In this case, a few simple cases can be definezn

• Friction less: the two material can slide between each other without loss of energy

• Friction: the two material can slide between each other with energy lost in friction

• Tie: the parts are stuck together, a constraint is applied and no interaction is needed to be
applied then

We chose the last model as we thought they would be closer to reality. Relating the project to
the different construction steps, the steel tube would be placed in the dug hole in the ground and
concrete poured to fill the space left. This would result in concrete that is stuck to the steel tube,
the two wouldn’t be able to freely slide in relation to the other.

If, for any particular reason, one would like both materials to not be tied together; an ex-
pensive preliminary product has to be cast in between in order to forbid the two materials to
get stuck. If not properly done, air could squeeze in, thus afterwards decreasing the thermal
exchanges between the steel tube and the concrete annulus.

The tied constraint is defined on the surface in contact (slave and master surfaces) in Abaqus as :
"constrains each of the nodes on the slave surface to have the same motion and the same value of
temperature" [DassaultSystemes, 2019].
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3.2 Static mechanical analysis

3.2. Static mechanical analysis

A mechanical analysis is performed using
Abaqus setting all the relevant previous
data set previously. The most relevant
solving model is "Static-General" which
performs a mechanical analysis. Small
displacements are considered so we set the
NLgeom at off.

The schematic of the problem can be
seen in the right figure. The model is set in
axisymmetric, where the two rectangles (one
for each material) is subject to 6 pressures,
2 loads on top, 2 reactive forces from the
bottom and 2 hydrostatic pressures on the
sides. The dimensions given are written in
meters and all the following dimensional
value are to be in SI international system.

The red colored nodes at the bottom
left are where the boundary condition is
applied. Additionally, as previously stated,
a tied constraint is set between the two
material, displayed by the × symbols on
the boundary between them. The three
yellow colored nodes are used as references
in the following section to compute the
mesh sensibility results. Figure 3: Schematic of the situation

The following pressures are entered into Abaqus, the names of the variables are referencing the
previous figure 3.

L1 = 1.4921 106 [Pa]
L2 = 1.5392 106 [Pa]

Ltop
w = 191 295 [Pa]

Ltop
g = 191 295 [Pa]
R1 = 1.5686 106 [Pa]
R2 = 1.5638 106 [Pa]

3.3. Thermo-mechanical analysis
The thermal analysis is performed using the previous model data and setting the solving model
as "Coupled Temperature Displacement". We are interested in the steady state results, so we
check this box in the step parameters. Once again, only small displacements are considered.
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3.4 Material limits

3.4. Material limits
The maximum water temperature is searched considering the maximum stress the concrete and
steel can stand. The isotropic thermo elastic constitutive equation is written

¯̄σ = λtr(¯̄ε) ¯̄I + 2µ¯̄ε− (3λ+ 2µ) ¯̄ατ

With ¯̄α the conductivity coefficient and τ = T − T0. According to this relation we expect the
behavior of the stresses to be linearly dependent of the temperature. This is uncovered by looking
for the relation σ(Θ) = aΘ + b.

In order to find these values, we perform several thermo-mecanical analysis with different water
temperatures, then we interpolate those results and find the maximum temperatures according to
the maximum stress the materials can stand.

3.5. Temperature dependent concrete
A new model is defined with a temperature dependent concrete properties, which is closer to the
reality. We set some values in the material properties and perform a new thermo-mechanical
simulation in order to see how it affects the results.

Figure 4: Setting temperature dependent material properties

4. Results and discussion
In this part we will show the results of the simulation, comment and discuss their reliability.

4.1. Results
4.1.1. Static mechanical analysis

The result of the simulation are shown in the figures below. The stress on the whole model is of
order 10MPa, most of it localized in the steel pipe. The displacement occurring in the model is of
order 10−4m, which seem reasonable for these type of materials.
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4.1 Results

Figure 5: Static mechanical analysis

The steel has a bigger young’s modulus (by order 10), thus is subject to less deformation and
higher stress. Since the applied pressure is of same order of magnitude, it is normal that the
concrete has more deformations.

In order to verify the simulation a mesh sensibility analysis is performed in the following section.

4.1.2. Thermo-mechanical analysis

The results of the coupled temperature displacements analysis is the following.

Figure 6: Coupled temperature displacement analysis

As expected the stresses and displacements are higher considering the temperature influence.
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4.1 Results

The steel is more affected in the displacements analysis.

4.1.3. Material limits

Several Coupled temperature displacements simulations are performed with different water
temperatures. The max stresses are the following

Temperature [°C] Max σ steel [Pa] Max σ concrete [Pa]
30 1.769e7 5.506e6
40 1.939e7 6.018e6
50 2.109e7 6.531e6
60 2.278e7 7.044e6

Table 1: Max stresses in the materials by boundary temperature

From this set of data, we plot the behavior of the stresses regarding the temperature.

Figure 7: Data interpolation

As expected, the behavior is linear. Then we approximate the function using a linear interpola-
tion

σ̃maxsteel(Θ) = 1.7e5Θ + 1.2601e7
σ̃maxconcrete(Θ) = 5.13e4Θ + 3.9676e6

Knowing σ̃maxsteel = 500e6 and σ̃maxconcrete = 30e6, we have{
Θmaxsteel = 2.8671 103 [◦C]
Θmaxconcrete = 507.4542 [◦C]

We can even say that the break would be localized in the concrete in the material interface
according to the maximum stresses localization, which is physically coherent.

There are two main methods to improve the admissible temperature : change the material
involved or modify its properties with another material.
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4.2 Validation and Verification

The simpler way would be to use a material with a higher characteristic cubic compressive
strength higher than proposed in the exercise. A second method would be creating a composite
concrete with fibers of steel (or high conductivity material) to conduct the temperature through
it and decrease it´s effect on the concrete.

4.1.4. Temperature dependent material

The result of the simulation with different concrete properties are the following

Figure 8: Temperature dependent concrete analysis

The magnitude of the displacements and stresses is quite similar to the non-dependent concrete.
However we can see that the distribution of the displacement is different. Also, the maximum
stress difference is not negligible. We should then consider this model which is more accurate for
the simulations.

4.2. Validation and Verification
• Validation: In order to compute this problem we idealized the geometry, material properties,
and mathematical model (constitutive equation, BC hypothesis, etc.). Checking the error
due to the idealization is called the validation process. It answers the question "Are we solving
the right equations?". This can be answered comparing the results to experimentation,
or through coherence observation (if the results are behaving as expected), or through an
analytic test case comparison.

• Verification: A numerical analysis involves a numerical error. Then we have to check if
our simulation are solving the equations right. This can be made through a mesh sensitivity
analysis (convergence of the numerical model).

4.2.1. Static Validation: analytic analysis

In order to check the model liability we can perform a simulation on a test case [A. Bazergui, 1987]
on which we know the analytic solution to compare the results.
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4.2 Validation and Verification

Let’s consider a rotation disc as it follows

Figure 9: Test case 3D (left) axisymmetric (right)

With the following data, we want to compute the stress and displacements considering isotropic
elasticity.

Young modulus 200000 MPa
Poison ratio 0.3

Angular velocity 3000 tr/min
Density 7800 kg/m3

Table 2: Data of analytic case

Considering the coordinate system (r, θ), the analytic solution is

• r = Rint = 0.01
σrr = 0

σθθ = 1 − ν

4 ρω2R2
e

(
3 + ν

1 − ν
+
(
Ri
Re

)2
)

u = 3 + ν

4E ρω2RiR
2
e

(
1 + 1 − ν

3 + ν

(
Ri
Re

)2
)

• r = Rext = 0.1
σrr = 0

σθθ = 1 − ν

4 ρω2R2
e

(
1 + 3 + ν

1 − ν

(
Ri
Re

)2
)

u = 3 + ν

4E ρω2R3
e

(
1 − ν

3 + ν
+
(
Ri
Re

)2
)
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4.2 Validation and Verification

And the results are the following

Figure 10: Numerical solution with Abaqus

Analytic Abaqus
u(Ri) 3.18210−4 mm 3.110−4 mm
σrr(Ri) 6.36 MPa 6.3 MPa
u(Re) 7.05410−4 mm 7.110−4 mm
σrr(Re) 1.41 MPa 1.4 MPa

Table 3: Test case rotating disc axisymmetric

We can see that the numerical results fits the analytic. Then we can confirm that the Static
General Axisymmetric isotropic elastic model is the right one to solve our problem.

4.2.2. Model Verification: mesh sensitivity

Assuming all the parameters of the simulation are correct, how can the user be sure of the success
of a simulation ?

Any user could create a mesh that would look good, but there is no guarantee of the liability of the
simulation. The simulation should provide good result without being too much time consuming,
as would be a simulation with a ridiculously high number of elements. The time consumption
of the simulations is linked with the elements size, and so the mesh density. Parts should be
meshed with as little amount of element without damaging the outcome results. In our case, using
the student edition of Abaqus, the number of nodes is limited to 1000 for a whole model. This
number is very small and forbid us from getting precise results but makes the simulations very fast.

A proper way to check the liability of the simulations here by its mesh would be to verify
the convergence of certain quantities over the mesh density applied on the whole model. A good
strategy would be to start with a coarse mesh and refine it each simulation. Critical values,
such as deformations or stresses over certain nodes, should be quantified until convergence is
uncovered. The user should also be cautious that the registered values are for the same chosen
nodes. As the mesh density would change, so will the coordinates of the nodes. The nodes
must be carefully selected so that they share the same coordinates through all the mesh parameters.

In our case, quantities were verified on 3 unconstrained nodes (A, B and C) located at the
corners of the model. The following figure displays the location of the nodes on the model. The
two nodes at the boundary of the two material displayed with green rectangles are the top and
bottom nodes. Those will be used for further verification.
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4.2 Validation and Verification

Figure 11: References nodes on the geometry

For the sake of clearness, the mesh sensitivity plot will display the absolute error with the
results obtained from the finest mesh as a reference. The results showed in this section comes
from six simulations with different approximate global size (hmaterial). Those parameters are
displayed in the following table.

hsteel hconcrete # nodes
0.017 0.021 975
0.02 0.022 894
0.022 0.024 740
0.024 0.026 636
0.027 0.029 499
0.03 0.032 422

Table 4: Mesh density parameters

• Static analysis
The likability of this first simulation is verified by doing a mesh sensibility plot of the three
geometric nodes A, B and C. The relative error of their Von Mises stress is plot prior to the
number of nodes, figure 12. Their values are strictly converging, with a very small relative
error. The results of this mesh sensibility are very concluding, the values of the Von Mises
stresses are converging, verifying the results obtained with this model.
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4.2 Validation and Verification
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Figure 12: Stress’s relative error of nodes A, B and C of static mechanical model

A remark can be done with the relative error of node A : Node A has a higher relative error,
this is explained by the fact that this is the only one of the three nodes located on the steel
material. The top and bottom of the steel undergo the highest amount of pressure in the
whole geometry (10 times higher than the two other nodes B and C). Those areas are under
a lot of forces and really close to either a boundary condition or a constraint. Apart from
that, the steel geometry is smaller than the concrete and, thus is more impacted by the
constant rate of change of hmaterial ≈ 0.02 between each simulation.

This can be verified by plotting the mesh sensibility results of two other geometric nodes
located on the steel material (fixed with the concrete) : the top and bottom nodes displayed
with a green rectangle on figure 11. The results displayed proves the previous discussion
since they have the same order of the relative error than node A.
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Figure 13: Stress relative error for bottom and top nodes of steel part
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4.2 Validation and Verification

• Coupled Thermal-Displacement analysis
The other exercises of the project uses another procedure in order to measure the impact of
the temperature on the model. The similar cases of Axisymmetrical Coupled Temperature-
Displacement has been studied in [Dubey and Kumar, 2017] and [S. Bayandor, 2014]. Those
papers compiled can be sufficient to assume the validation and the verification of the model.

Although, for the sake of being complete, another mesh sensibility is performed following
the same methodology. The plot of the relative error is displayed on the figure 14. The
results of this mesh sensibility analysis are concluding, the values of the Von Mises stresses
are converging, verifying once again the results obtained with this procedure.
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Figure 14: Stress’s relative error of nodes A, B and C of thermo-elastic model
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5. Conclusion and future work
This project was a way to apply many skills we acquired this semester. Analyzing a real case of
civil engineering structure was interesting and allowed us to carry out the simulation from the
modelling to the numerical analysis and more, making us ask our own questions on hypothesis,
models, and verification. We brought answers from group and individual reflection, asking our
teachers, using our background and through references.

As a future work we could consider a more accurate simulation including CFD, and temperature
dependent data, which gives not negligible differences (comparing to non-dependent material) as
we saw previously.

An interesting further work could be considering a composite concrete, which keep its structural
properties, and improve the thermal conductivity, which would improve the heat exchange, then
would need less surface contact and less digging. Analyzing this kind of composite would need
techniques like homogenization.
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A. Appendix
A.1. Work repartition
In this project the work was divided equally as much as possible. The task were split the following
way

Antoine’s work

• Introduction / problem statement
redaction

• Material limit research

• Temperature dependent material anal-
ysis

• Validation & verification bibliography

• Static test case

Arthur’s work

• Abaqus Static & Thermoelastic mod-
elling

• Static and Thermoelastic analysis and
comments

• Mesh sensitivity redaction

We both worked on the decision of the hypothesis, boundary conditions, model used.
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