Simulation Project: Building Subjected to Wind Loads

Saskia Loosveldt Tomàs and Gabriel Valdés Alonzo

Static and Dynamic analysis using ABAQUS 2 types of boundary conditions: Clamped and hinged

Static Analysis: Horizontal Displacements Clamped

Static Analysis: Horizontal Displacements Hinged

Static Analysis: Horizontal Displacements

Admissible Displacement of 0.05H = 62.5 mm

	Case 1, clamped	Case 1, hinged	Case 2, clamped	Case 2, hinged
Max. displacement (mm)	21.87	54.82	21.81	54.75
Safety factor	2.86	1.14	2.87	1.14

Static Analysis: Vertical Displacements Clamped

Static Analysis: Vertical Displacements Hinged

Static Analysis: Vertical Displacements

Admissible Displacement of L/480 = 15.63 mm

	Case 1, clamped	Case 1, hinged	Case 2, clamped	Case 2, hinged
Max. displacement (mm)	11.20	11.80	9.57	10.34
Safety factor	1.40	1.32	1.63	1.51

Static Analysis: Von Mises Stresses Clamped

Static Analysis: Von Mises Stresses Hinged

Static Analysis: Von Mises Stresses

Yield Stress of 275MPa

	Case 1, clamped	Case 1, hinged	Case 2, clamped	Case 2, hinged
Max. Stress (MPa)	132	118.5	187.6	202.7
Safety factor	2.08	2.32	1.47	1.36

Static Analysis: Axial Stresses Clamped

Static Analysis: Axial Stresses Hinged

CASE 1

Static Analysis: Axial Stresses

Yield Stress of 275MPa

	Case 1, clamped	Case 1, hinged	Case 2, clamped	Case 2, hinged
Max. Stress (MPa)	129.00	134.80	90.93	104.90
Safety factor	2.13	2.04	3.02	2.62
Min. Stress (MPa)	132.00	187.60	131.50	202.70
Safety factor	2.08	2.32	1.47	1.36

Static Analysis: Bending Moments Clamped

Static Analysis: Bending Moments Hinged

Static Analysis: Axial Stresses

Admissible values of the Bending Moment

Profile	$W_x \ (mm^3)$	$M_y (N \cdot mm)$
HEB240	$9.38 \cdot 10^5$	$2.58 \cdot 10^8$
HEB300	$1.68 \cdot 10^{6}$	$4.61 \cdot 10^8$
IPE360	$9.04 \cdot 10^5$	$2.49 \cdot 10^8$
IPE550	$2.44 \cdot 10^{6}$	$6.71 \cdot 10^8$

	Case 1, clamped	Case 1, hinged	Case 2, clamped	Case 2, hinged
HEB300 max moment $(N \cdot mm)$	$1.63 \cdot 10^8$	$2.78 \cdot 10^8$	$1.61 \cdot 10^8$	$2.28 \cdot 10^8$
Safety factor	2.84	1.66	2.87	2.02
IPE550 max moment $(N \cdot mm)$	$3.19 \cdot 10^8$	$3.97 \cdot 10^8$	$2.87 \cdot 10^8$	$3.65 \cdot 10^8$
Safety factor	2.10	1.69	2.34	1.84
IPE550 min moment $(N \cdot mm)$	$-3.07 \cdot 10^8$	$-3.18 \cdot 10^8$	$-2.16 \cdot 10^8$	$-2.47 \cdot 10^8$
Safety factor	2.19	2.11	3.11	2.72

Dynamic Analysis

Wind frequency 2Hz

Mode	Value	Frequency (Hz)
1	965.01	4.9441
2	11166	16.818
3	34921	29.742
4	58608	38.530
5	76105	41.849

Mode	Value	Frequency (Hz)
1	371.91	3.0693
2	7149.5	13.457
3	32599	28.736
4	57340	38.111
5	66032	40.897

CASE 1 CLAMPED

CASE 1 Hinged

Conclusions

- All the cases in the static analysis have admissible values for the structure to not collapse.
- Clamped constraints are preferable over hinged constraints for all cases.
- The dynamic analysis shows no resonance phenomena.
- Case 2, which considers distributed loads, is more realistic but more difficult to analyze.

Future work

- Safety factor should be improved since they are too close to 1.
- A further analysis could be computed considering distributed wind loads with different directions.
- Optimization of the structure is desired to reduce costs and improve safety factors.