Master in Computational Mechanics Computational Mechanics Tools
Assignment 1 Year 2019 - 2020
Transfinite Interpolation (TFI) Due to the 11th November

1 Introduction

In this homework you will implement a 2D version of the Transfinite Interpolation (TFT)
method. To this end we assume a computational domain (£,7) and a physical space (z,y)

such that €
(&, n

X =
&) [y(&n)]

with 0 < ¢ <1 and 0 <7 < 1. Moreover, we assume a discretized version of the computational
domain such that X(&;7,7,) is a structured grid for:

0<g =171 <1

0<n =45t <1
where [=1,2,.... M +1and J=1,2,...,N + 1, being M and N the number of elements in
the ¢ and n directions respectively, see Figure 1.

X@Enm)
1A /"\ A

An
0 ' >
0 A 1
n Yy ‘
é xT

Figure 1: Mapping between computational and physical domain.

TFT uses an univariate interpolation in each direction of the computational space:

U,n) = Zal X (&i,m)

V(&n) = ZBJ X (&,n;)

where £ = = 0 and & = 1, = 1 are the computational domain limits, and «;(§) and 5;(n)
are called blending functions. The blending functions for the linear TFI are defined as:

(a(§)=1-¢
as(§) =¢
Bi(n) =1-n

(Ba(n) =1

V(&M =D D> €8 X (&),

Finally, the transfinite mapping is defined as the Boolean sum of the two interpolation:

Therefore, the structured mesh in the physical space is computed as

X(&rms) =U(E,ns) © V(E,ns) =UEr,n) + V(Ern) — UV(ErLny) (1)

for I =1,2,...,M and J =1,2,..., N, being

UErn) = (1=&)X(0,ms) + &X(1,n5) (2)

V) = (1=n)X(E0) +n,X (&, 1) (3)

V(&ng) = (1-&)1—n,)X(0,0) + (1 —&)nsX(0,1) + (4)
&r(1—ny)X(L,0) + &myX(L,1).

In order to control the desired spacing between grid points in the physical space we introduce
an intermediate control domain between the computational and physical domains according to,
see Figure 2:

u= f(&n)
u,v) = F(&,n),
) =) N {vzg(f,n)

In our implementation we will define the intermediate space (i.e. functions f(&,n) and g(&,n)
using the single-exponential function:

e — 1

A4_1

r= (5)
that maps 0 < p < 1 into 0 < r < 1. Note that A is a parameter selected by the user. The
sign and magnitude of the parameter A allows to concentrate nodes near the desired position.
Equation (5) becomes singular for A = 0. However for small values of |A| function (5) can be
approximated by the straight line r» = p.

FEn) g X(u)

1
An
0 >
0
AE 1
nT yT

Figure 2: Intermediate control domain between the computational and physical domains.

2 Implementation details

Our implementation is composed by five files:
e mainMesher.m It is the main function and controls the execution flow of our application.
e linearTFI.m It implements the linear TFI method.

e girdControlSpacing.m It implements the definition of the intermediate space to control
the spacing between points.

e boundary.m It defines the boundary of the geometry to be meshed.
e plotMesh.m It plots the final mesh on the screen.

Function mainMesher controls the flow of our application:

function [] = mainMesher()
clear all;

[X,T]=1inearTFI(12,24);

plotMesh(X,T,’qua’,0)

where:

e function linearTFI generates a structured quadrilateral mesh using the linear TFI method
(you will implement several parts of this method).

e function plotMesh plots a mesh on the screen (we provide a complete version of this
function)

Function linearTFI is implemented as:

function [X,T] = linearTFI(nOfChiElems,nOfEtaElems)

n0fChiNodes=n0fChiElems+1;
n0fEtaNodes=n0fEtaElems+1;

phi=createBoundaryNodes (n0fChiNodes,n0fEtaNodes) ;
phi=createInnerNodes (phi) ;
[X,T]=createMesh(phi) ;

where

e Function createBoundaryNodes generates boundary nodes following the three steps de-
picted in Figure 2:

— First, it generates a equidistributed set of points in the computational space (the
(€, m)-space).

— Second, it maps this set of points to the intermediate space (the (u,v)-space) using
function gridControlSpacing. This function calls function singleExp that per-
forms the mapping according to equation (5). You will code this function.

— Third, it maps the intermediate coordinates to the physical space (the (z,y)-space)
using function boundary. Function boundary defines the contour of the geometry for
two cases: a rectangular domain (example 1 in the provided code), and a quarter of
circular ring (example 2 in the provided code). We provide a complete version of this
function. To use each example comment and uncomment the corresponding lines.
Note that we implement this function because Matlab does not provide a graphical
interface to define geometries.

e Function createInnerNodes generates points in the inner part of the geometry. You will
code this function according to the code of function createBoundaryNodes. That is, for
each inner node:

— First, you compute its computational coordinates, (§,7).
— Second, you compute its intermediate coordinates, (u,v), using (5).

— Third, you compute its physical coordinates, (z,y), using equation (1). Hence, you
will need to code the inivariate interpolants U and V, and the tensor product UV,
see equations (2), (3) and (4) respectivelly.

e Function createMesh generates a standard representation of the mesh. That is, it gener-
ates the coordinate matrix X and the connectivity matrix T from an internal representation
stored in the multi-array Phi. We provide a complete version of this function.

3 Tasks

1. In file 1inearTFI.m write the code corresponding to functions:

createlnnerNodes
o U
oV
o UV

2. In file gridControlSpacing.m write the code corresponding to function singleExp.
3. Generate a structured mesh using your application for:

e arectangular domain of height equals 4 and width equals 3 (example 1 in boundary.m
file).

e a quarter of circular ring of inner radii equals 4, outer radii equals 7 and angle equals
7/2 (example 2 in boundary .m file).

For both examples present the obtained mesh using A = 3 and A = —3 when function
singleExp is used to concentrate nodes in the ¢ and 7 directions.

4. Apply the developed application to a new geometry. To this end modify file boundary.m
and create a new domain. Present three meshes concentrating nodes near different bound-
aries

