
Master in Computational Mechanics Computational Mechanics Tools

Assignment 1 Year 2019 - 2020

Transfinite Interpolation (TFI) Due to the 11th November

1 Introduction
In this homework you will implement a 2D version of the Transfinite Interpolation (TFI)
method. To this end we assume a computational domain (ξ, η) and a physical space (x, y)
such that

X(ξ, η) =

[
x(ξ, η)

y(ξ, η)

]
with 0 ≤ ξ ≤ 1 and 0 ≤ η ≤ 1. Moreover, we assume a discretized version of the computational
domain such that X(ξI , ηJ) is a structured grid for: 0 ≤ ξI =

I − 1
M ≤ 1

0 ≤ ηJ = J − 1
N ≤ 1

where I = 1, 2, . . . ,M + 1 and J = 1, 2, . . . , N + 1, being M and N the number of elements in
the ξ and η directions respectively, see Figure 1.

Figure 1: Mapping between computational and physical domain.

TFI uses an univariate interpolation in each direction of the computational space:

U(ξ, η) =
2∑
i=1

αi(ξ)X(ξi, η)

V(ξ, η) =
2∑
j=1

βj(η)X(ξ, ηj)

1

where ξ1 = η1 = 0 and ξ2 = η2 = 1 are the computational domain limits, and αi(ξ) and βj(η)
are called blending functions. The blending functions for the linear TFI are defined as:

α1(ξ) = 1− ξ

α2(ξ) = ξ

β1(η) = 1− η

β2(η) = η

TFI also considers the tensor product of these univariate interpolation:

UV(ξ, η) =
2∑
i=1

2∑
j=1

αi(ξ)βj(η)X(ξi, ηj).

Finally, the transfinite mapping is defined as the Boolean sum of the two interpolation:

X(ξ, η) = U(ξ, η) ⊕ V(ξ, η) = U(ξ, η) + V(ξ, η) − UV(ξ, η).

Therefore, the structured mesh in the physical space is computed as

X(ξI , ηJ) = U(ξI , ηJ) ⊕ V(ξI , ηJ) = U(ξI , ηJ) + V(ξI , ηJ) − UV(ξI , ηJ) (1)

for I = 1, 2, . . . ,M and J = 1, 2, . . . , N , being

U(ξI , ηJ) = (1− ξI)X(0, ηJ) + ξIX(1, ηJ) (2)

V(ξI , ηJ) = (1− ηJ)X(ξI , 0) + ηJX(ξI , 1) (3)

UV(ξI , ηJ) = (1− ξI)(1− ηJ)X(0, 0) + (1− ξI)ηJX(0, 1) + (4)

ξI(1− ηJ)X(1, 0) + ξIηJX(1, 1).

In order to control the desired spacing between grid points in the physical space we introduce
an intermediate control domain between the computational and physical domains according to,
see Figure 2:

(u, v) = F(ξ, η), ⇒

{
u = f(ξ, η)

v = g(ξ, η)

In our implementation we will define the intermediate space (i.e. functions f(ξ, η) and g(ξ, η)
using the single-exponential function:

r =
eAρ − 1

eA − 1
(5)

that maps 0 ≤ ρ ≤ 1 into 0 ≤ r ≤ 1. Note that A is a parameter selected by the user. The
sign and magnitude of the parameter A allows to concentrate nodes near the desired position.
Equation (5) becomes singular for A = 0. However for small values of |A| function (5) can be
approximated by the straight line r = ρ.

2

Figure 2: Intermediate control domain between the computational and physical domains.

2 Implementation details
Our implementation is composed by five files:

• mainMesher.m It is the main function and controls the execution flow of our application.

• linearTFI.m It implements the linear TFI method.

• girdControlSpacing.m It implements the definition of the intermediate space to control
the spacing between points.

• boundary.m It defines the boundary of the geometry to be meshed.

• plotMesh.m It plots the final mesh on the screen.

Function mainMesher controls the flow of our application:

function [] = mainMesher()
clear all;

[X,T]=linearTFI(12,24);

plotMesh(X,T,’qua’,0)

where:

• function linearTFI generates a structured quadrilateral mesh using the linear TFI method
(you will implement several parts of this method).

• function plotMesh plots a mesh on the screen (we provide a complete version of this
function)

3

Function linearTFI is implemented as:

function [X,T] = linearTFI(nOfChiElems,nOfEtaElems)

nOfChiNodes=nOfChiElems+1;
nOfEtaNodes=nOfEtaElems+1;

phi=createBoundaryNodes(nOfChiNodes,nOfEtaNodes);
phi=createInnerNodes(phi);
[X,T]=createMesh(phi);

where

• Function createBoundaryNodes generates boundary nodes following the three steps de-
picted in Figure 2:

– First, it generates a equidistributed set of points in the computational space (the
(ξ, η)-space).

– Second, it maps this set of points to the intermediate space (the (u, v)-space) using
function gridControlSpacing. This function calls function singleExp that per-
forms the mapping according to equation (5). You will code this function.

– Third, it maps the intermediate coordinates to the physical space (the (x, y)-space)
using function boundary. Function boundary defines the contour of the geometry for
two cases: a rectangular domain (example 1 in the provided code), and a quarter of
circular ring (example 2 in the provided code). We provide a complete version of this
function. To use each example comment and uncomment the corresponding lines.
Note that we implement this function because Matlab does not provide a graphical
interface to define geometries.

• Function createInnerNodes generates points in the inner part of the geometry. You will
code this function according to the code of function createBoundaryNodes. That is, for
each inner node:

– First, you compute its computational coordinates, (ξ, η).

– Second, you compute its intermediate coordinates, (u, v), using (5).

– Third, you compute its physical coordinates, (x, y), using equation (1). Hence, you
will need to code the inivariate interpolants U and V, and the tensor product UV,
see equations (2), (3) and (4) respectivelly.

• Function createMesh generates a standard representation of the mesh. That is, it gener-
ates the coordinate matrix X and the connectivity matrix T from an internal representation
stored in the multi-array Phi. We provide a complete version of this function.

3 Tasks
1. In file linearTFI.m write the code corresponding to functions:

4

• createInnerNodes

• U

• V

• UV

2. In file gridControlSpacing.m write the code corresponding to function singleExp.

3. Generate a structured mesh using your application for:

• a rectangular domain of height equals 4 and width equals 3 (example 1 in boundary.m
file).

• a quarter of circular ring of inner radii equals 4, outer radii equals 7 and angle equals
π/2 (example 2 in boundary.m file).

For both examples present the obtained mesh using A = 3 and A = −3 when function
singleExp is used to concentrate nodes in the ξ and η directions.

4. Apply the developed application to a new geometry. To this end modify file boundary.m
and create a new domain. Present three meshes concentrating nodes near different bound-
aries

5

