Master in Computational Mechanics
Assignment 1
Transfinite Interpolation (TFI)

Year 2019-2020
Due to the 11th November

1 Introduction

In this homework you will implement a 2D version of the Transfinite Interpolation (TFI) method. To this end we assume a computational domain (ξ, η) and a physical space (x, y) such that

$$
\mathbf{X}(\xi, \eta)=\left[\begin{array}{l}
x(\xi, \eta) \\
y(\xi, \eta)
\end{array}\right]
$$

with $0 \leq \xi \leq 1$ and $0 \leq \eta \leq 1$. Moreover, we assume a discretized version of the computational domain such that $\mathbf{X}\left(\xi_{I}, \eta_{J}\right)$ is a structured grid for:

$$
\left\{\begin{array}{l}
0 \leq \xi_{I}=\frac{I-1}{M} \leq 1 \\
0 \leq \eta_{J}=\frac{J-1}{N} \leq 1
\end{array}\right.
$$

where $I=1,2, \ldots, M+1$ and $J=1,2, \ldots, N+1$, being M and N the number of elements in the ξ and η directions respectively, see Figure 1.

Figure 1: Mapping between computational and physical domain.
TFI uses an univariate interpolation in each direction of the computational space:

$$
\begin{aligned}
& \mathbf{U}(\xi, \eta)=\sum_{i=1}^{2} \alpha_{i}(\xi) \mathbf{X}\left(\xi_{i}, \eta\right) \\
& \mathbf{V}(\xi, \eta)=\sum_{j=1}^{2} \beta_{j}(\eta) \mathbf{X}\left(\xi, \eta_{j}\right)
\end{aligned}
$$

where $\xi_{1}=\eta_{1}=0$ and $\xi_{2}=\eta_{2}=1$ are the computational domain limits, and $\alpha_{i}(\xi)$ and $\beta_{j}(\eta)$ are called blending functions. The blending functions for the linear TFI are defined as:

$$
\left\{\begin{array}{l}
\alpha_{1}(\xi)=1-\xi \\
\alpha_{2}(\xi)=\xi \\
\beta_{1}(\eta)=1-\eta \\
\beta_{2}(\eta)=\eta
\end{array}\right.
$$

TFI also considers the tensor product of these univariate interpolation:

$$
\mathbf{U V}(\xi, \eta)=\sum_{i=1}^{2} \sum_{j=1}^{2} \alpha_{i}(\xi) \beta_{j}(\eta) \mathbf{X}\left(\xi_{i}, \eta_{j}\right)
$$

Finally, the transfinite mapping is defined as the Boolean sum of the two interpolation:

$$
\mathbf{X}(\xi, \eta)=\mathbf{U}(\xi, \eta) \oplus \mathbf{V}(\xi, \eta)=\mathbf{U}(\xi, \eta)+\mathbf{V}(\xi, \eta)-\mathbf{U V}(\xi, \eta)
$$

Therefore, the structured mesh in the physical space is computed as

$$
\begin{equation*}
\mathbf{X}\left(\xi_{I}, \eta_{J}\right)=\mathbf{U}\left(\xi_{I}, \eta_{J}\right) \oplus \mathbf{V}\left(\xi_{I}, \eta_{J}\right)=\mathbf{U}\left(\xi_{I}, \eta_{J}\right)+\mathbf{V}\left(\xi_{I}, \eta_{J}\right)-\mathbf{U V}\left(\xi_{I}, \eta_{J}\right) \tag{1}
\end{equation*}
$$

for $I=1,2, \ldots, M$ and $J=1,2, \ldots, N$, being

$$
\begin{align*}
\mathbf{U}\left(\xi_{I}, \eta_{J}\right)= & \left(1-\xi_{I}\right) \mathbf{X}\left(0, \eta_{J}\right)+\xi_{I} \mathbf{X}\left(1, \eta_{J}\right) \tag{2}\\
\mathbf{V}\left(\xi_{I}, \eta_{J}\right)= & \left(1-\eta_{J}\right) \mathbf{X}\left(\xi_{I}, 0\right)+\eta_{J} \mathbf{X}\left(\xi_{I}, 1\right) \tag{3}\\
\mathbf{U V}\left(\xi_{I}, \eta_{J}\right)= & \left(1-\xi_{I}\right)\left(1-\eta_{J}\right) \mathbf{X}(0,0)+\left(1-\xi_{I}\right) \eta_{J} \mathbf{X}(0,1)+ \tag{4}\\
& \xi_{I}\left(1-\eta_{J}\right) \mathbf{X}(1,0)+\xi_{I} \eta_{J} \mathbf{X}(1,1) .
\end{align*}
$$

In order to control the desired spacing between grid points in the physical space we introduce an intermediate control domain between the computational and physical domains according to, see Figure 2:

$$
(u, v)=\mathbf{F}(\xi, \eta), \quad \Rightarrow \quad\left\{\begin{array}{l}
u=f(\xi, \eta) \\
v=g(\xi, \eta)
\end{array}\right.
$$

In our implementation we will define the intermediate space (i.e. functions $f(\xi, \eta)$ and $g(\xi, \eta)$ using the single-exponential function:

$$
\begin{equation*}
r=\frac{e^{A \rho}-1}{e^{A}-1} \tag{5}
\end{equation*}
$$

that maps $0 \leq \rho \leq 1$ into $0 \leq r \leq 1$. Note that A is a parameter selected by the user. The sign and magnitude of the parameter A allows to concentrate nodes near the desired position. Equation (5) becomes singular for $A=0$. However for small values of $|A|$ function (5) can be approximated by the straight line $r=\rho$.

Figure 2: Intermediate control domain between the computational and physical domains.

2 Implementation details

Our implementation is composed by five files:

- mainMesher.m It is the main function and controls the execution flow of our application.
- linearTFI.m It implements the linear TFI method.
- girdControlSpacing.m It implements the definition of the intermediate space to control the spacing between points.
- boundary.m It defines the boundary of the geometry to be meshed.
- plotMesh.m It plots the final mesh on the screen.

Function mainMesher controls the flow of our application:

```
function [] = mainMesher( )
clear all;
    [X,T]=linearTFI (12, 24);
plotMesh(X,T,'qua',0)
```

where:

- function linearTFI generates a structured quadrilateral mesh using the linear TFI method (you will implement several parts of this method).
- function plotMesh plots a mesh on the screen (we provide a complete version of this function)

Function linearTFI is implemented as:

```
function [X,T] = linearTFI(nOfChiElems,nOfEtaElems)
nOfChiNodes=nOfChiElems+1;
nOfEtaNodes=nOfEtaElems+1;
phi=createBoundaryNodes(nOfChiNodes,nOfEtaNodes);
phi=createInnerNodes(phi);
[X,T]=createMesh(phi);
```

where

- Function createBoundaryNodes generates boundary nodes following the three steps depicted in Figure 2:
- First, it generates a equidistributed set of points in the computational space (the (ξ, η)-space).
- Second, it maps this set of points to the intermediate space (the (u, v)-space) using function gridControlSpacing. This function calls function singleExp that performs the mapping according to equation (5). You will code this function.
- Third, it maps the intermediate coordinates to the physical space (the (x, y)-space) using function boundary. Function boundary defines the contour of the geometry for two cases: a rectangular domain (example 1 in the provided code), and a quarter of circular ring (example 2 in the provided code). We provide a complete version of this function. To use each example comment and uncomment the corresponding lines. Note that we implement this function because Matlab does not provide a graphical interface to define geometries.
- Function createInnerNodes generates points in the inner part of the geometry. You will code this function according to the code of function createBoundaryNodes. That is, for each inner node:
- First, you compute its computational coordinates, (ξ, η).
- Second, you compute its intermediate coordinates, (u, v), using (5).
- Third, you compute its physical coordinates, (x, y), using equation (1). Hence, you will need to code the inivariate interpolants \mathbf{U} and \mathbf{V}, and the tensor product UV, see equations (2), (3) and (4) respectivelly.
- Function createMesh generates a standard representation of the mesh. That is, it generates the coordinate matrix X and the connectivity matrix T from an internal representation stored in the multi-array Phi. We provide a complete version of this function.

3 Tasks

1. In file linearTFI.m write the code corresponding to functions:

- createInnerNodes
- U
- V
- UV

2. In file gridControlSpacing.m write the code corresponding to function singleExp.
3. Generate a structured mesh using your application for:

- a rectangular domain of height equals 4 and width equals 3 (example 1 in boundary.m file).
- a quarter of circular ring of inner radii equals 4 , outer radii equals 7 and angle equals $\pi / 2$ (example 2 in boundary.m file).

For both examples present the obtained mesh using $A=3$ and $A=-3$ when function singleExp is used to concentrate nodes in the ξ and η directions.
4. Apply the developed application to a new geometry. To this end modify file boundary.m and create a new domain. Present three meshes concentrating nodes near different boundaries

