Universitat Politècnica de Catalunya
 Numerical Methods in Engineering Computational Mechanics Tools

Assignment 3

PDE toolbox

Eduard Gómez

December 12, 2019

Contents
1 Refining the mesh 1
2 Changing the time interval 4
3 Large values of t 4

Abstract

In this document I report my results on following the instructions proposed in assignment 3. These entail the solving of a time-dependent value boundary problem with the PDE toolbox for Matlab with different solver options. The problem solved is elliptic.

Problem statement

We are asked to solve the following problem:

$$
\left.\begin{array}{ll}
\frac{\partial u}{\partial t}-\Delta u=-e^{-3 t} & \text { in } \Omega \tag{1}\\
\frac{\partial u}{\partial n}=-y & \text { on } \Gamma_{\text {left }} \\
\frac{\partial u}{\partial n}=2+y & \text { on } \Gamma_{\text {right }} \\
u=x^{2}+e^{-3 t} & \text { on } \Gamma_{\text {bottom }} \\
\frac{\partial u}{\partial n}=x-2 & \text { on } \Gamma_{\text {top }} \\
u=x^{2}+x y-y^{2}+1 & \text { at } t=0
\end{array}\right\}
$$

where Ω is a unit square $[0,1] \times[0,1]$ with border Γ. We are also given the analytical solution to the problem:

$$
\begin{equation*}
u(x, y, t)=x^{2}+x y-y^{2}+e^{-3 t} \tag{2}
\end{equation*}
$$

With this we have everything we need to start solving the problem.

1 Refining the mesh

We are asked to solve for $t \in[0,10]$ with four increasingly thinner meshes. We'll solve it with time-steps of $0.5 s$. The results can be found in figure 1 . The error is calculated at the end of the time interval since that's when it should be maximum. The error and mean error have been computed as:

$$
\begin{aligned}
\varepsilon(x, y) & =\left\|u_{a}(x, y)-u_{\mathrm{num}}(x, y)\right\| \\
\bar{\varepsilon} & =\frac{1}{n} \sum_{i=1}^{n} \varepsilon\left(x_{i}, y_{i}\right)
\end{aligned}
$$

where n is the number of nodes, u_{a} is the analytical solution and $u_{\text {num }}$ is the numerical approximation.

Figure 1: Meshes and error maps evaluated at $t=10$. Zoom in to see the thinner meshes.

Figure 2: Error as a function of element size

If we plot the error versus. the mean element size we obtain the plot in figure 2. The mean size for the elements is computed as:

$$
\begin{equation*}
h=\sqrt{\frac{A}{2 n_{e}}} \tag{3}
\end{equation*}
$$

The slope of the line is 2.14 , different from the theoretical 1.8. This implies a possible mistake in the calculation of the error.

2 Changing the time interval

In this section we are asked to solve the same system but for different end-times and compare the results. To do so I used the thinnest mesh from the previous section and obtained the following results:

$t_{\text {end }}$	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
Mean error	0.9513	1.3861	1.8339	2.2823	2.7307	3.1791	3.6275	4.0759	4.5244	4.9728

Table 1: Error as a function of time.

As can be seen, as time goes on the error accumulates. Hence, longer time intervals will cause larger discrepancies between analytical and numerical solutions.

3 Large values of t

In this final section we are asked to provide a solution for $t=50$ in a more accurate manner than the method we've been using before. If we pay attention to equation 2 we will notice that:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} u(x, y, t)=x^{2}+x y-y^{2} \tag{4}
\end{equation*}
$$

That is, this function tends towards a steady state. The solution, then, becomes time-independent for large values of t. The term that disappears is $e^{-3 t}$, and for $t=50$ it becomes 7.1751×10^{-66}, i.e. negligible. Needless to say, $\partial u / \partial t$ becomes negligible as well. Hence, we can use a time independent solver to solve the following problem:

$$
\left.\begin{array}{ll}
\Delta u=0 & \text { in } \Omega \tag{5}\\
\frac{\partial u}{\partial n}=-y & \text { on } \Gamma_{\text {left }} \\
\frac{\partial u}{\partial n}=2+y & \text { on } \Gamma_{\text {right }} \\
u=x^{2} & \text { on } \Gamma_{\text {bottom }} \\
\frac{\partial u}{\partial n}=x-2 & \text { on } \Gamma_{\text {top }}
\end{array}\right\}
$$

The results can be seen in figure 3 .

Figure 3: Results evaluated at $t=50$

