Assignment 2 - Transfinite PDE Tool-Box

Daniel Díez Rodríguez

1st December 2015

Solve the following problem with the MATLAB PDE ToolBox:

$$
\begin{gather*}
u_{t}-\triangle u=f \tag{1}\\
\text { in } \Omega=[0,1]^{2} \\
f(x, y, t)=-3 e^{-3 t} \tag{2}
\end{gather*}
$$

We consider an initial condition at $\mathrm{t}=0$:

$$
\begin{equation*}
u(x, y, t=0)=x^{2}+x y-y^{2}+1 \tag{3}
\end{equation*}
$$

And the following boundary conditions:

$$
\begin{gathered}
u_{n}(x=0, y, t)=-y \\
u_{n}(x=1, y, t)=2+y \\
u(x, y=0, t)=x^{2}+e^{-3 t} \\
u_{n}(x, y=1, t)=x-2
\end{gathered}
$$

The analytical solution of this problem is given by:

$$
\begin{equation*}
u(x, y, t)=x^{2}+x y-y^{2}+3 e^{-3 t} \tag{4}
\end{equation*}
$$

1. Solve the problem and refine the initial mesh up to 4 times. Verify that the theoretical convergence order holds.
2. How is the solution affected when we modify the final time?
3. We are interested in obtaining the solution at time $t_{\text {end }}=50$. Find a more efficient manner to solve this problem. You do not need to prove the equivalence mathematically, but you need to provide numerical evidence of the new method.

1 Solve the problem and refine the initial mesh up to 4 times. Verify that the theoretical convergence order holds.
$\mathrm{h}=$ element size

h	error
0.1	$7.62825 e-3$
0.05	$2.16183 e-3$
0.025	$6.05323 e-4$
0.0125	$1.67808 e-4$
0.00625	$4.62822 e-5$

Figure 1: Convergence function

2 How is the solution affected when we modify the final time?

Figure 2: Solution for $\mathrm{t}=1$

Figure 3: Solution for $\mathrm{t}=10$

The solution varies very little with time.

3 We are interested in obtaining the solution at time $t_{\text {end }}=50$. Find a more efficient manner to solve this problem. You do not need to prove the equivalence mathematically, but you need to provide numerical evidence of the new method.

For $t=50$, the time dependent terms tend to $0\left(e^{-50} \approx 0\right)$. The problem can be considered stationary. The problem that we solve now is:

$$
\begin{gather*}
u_{t}-\triangle u=0 \tag{5}\\
\text { in } \Omega=[0,1]^{2}
\end{gather*}
$$

And the following boundary conditions:

$$
\begin{gathered}
u_{n}(x=0, y)=-y \\
u_{n}(x=1, y)=2+y \\
u(x, y=0)=x^{2} \\
u_{n}(x, y=1)=x-2
\end{gathered}
$$

Computing the greatest error between the u obtained in this new problem and the value of u that we obtain solving the previous problem with $t=50$ we obtain:

$$
\text { error }=2.9252 * 10^{-12}
$$

So the equivalence is proved.

