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1 Introduction
In this report we solve the tasks asked in the fourth Computational Mechanics Tools assign-
ment. In it, we are shown a design to exploit low grade geothermal energy for heating purposes.
The design features a pipe going 25 meters underground, where soil temperature is stable year
round. The pipe then goes back up. To lower costs, the foundation pile of a building is used.
The pile is hollowed out to allow the pipe to run through it.

Due to the complexity of the coupled liquid-solid problem, a simplified version is offered. In it,
the water is considered to be at constant temperature (without any convection effects) and a
single pipe is considered. See figure 1 for a clearer explanation.

Only one meter of the domain is analysed, located at a depth of 19 ± 0.5 m. All relevant
material properties are displayed in table 1.

2 Methodology discussion
The simulations performed in this paper consisted on using the the basic concepts and workflow
for linear Finite Element structural analyses in STAR-CCM+ for simulating the thermal stresses
on a pile buried in the ground. The case under study is a pile loaded on its upper-most end and
subjected to pressure loads both from the surrounding ground and the flowing water running
inside. As the pile is not considered to be weightless, gravity models need be used.

2.1 Solvers and continua models
The physics models that will be defined will characterize the main variables of the simulation
and the mathematical formulations used to generate the solution. The task of these models
will then be to make relevant field functions available and place initial conditions and reference
values for its continuum.

The most essential model is the Steady state model, used for all steady-state calculations.
Then, to calculate the stresses two different physics continua will be used. One that allows a

Material E ν σy ρ α k

(GPa) (MPa) (kg/m3) (◦C−1) (W m−1K−1)

Concrete 27 0.2 500 2500 1.0 × 10−5 2

Steel 210 0.3 30 7800 1.2 × 10−5 50

Soil - - - 2000 - -

Table 1: Material properties
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conjugate heat transfer analysis, with which the steady-state temperature distributions in both
materials are computed, and another which incorporates the solid stress model and allows for
thermal and mechanical loads. For the first part of the simulation, where the thermal loads are
not computed, the Specified Thermal Load model will not be considered.

In this simulation, the structure internal stress distribution will be computed using the linear
Sparse Direct Solver, that is enabled when using the Solid Stress model. It is important to
set up the simulation parameters and models before meshing as the Solid Stress Model has
particular requirements regarding the cell type, as the solid region associated to it will only
support tetrahedral or hexahedral meshers.

The displacements that result from loading the pile are assumed to be small, so that the load-
displacement relationship remains linear. For this reason, a Linear Isotropic Elastic model will
be selected together with the three-dimensional Solid Stress.

Then, in order to study the thermal stresses of the pipe section in response to hot water
entering the inlet, the simulation incorporates both conjugate heat transfer and stress analysis.
In STAR-CCM+ it is possible to combine the advantages of the finite volume (FV) and the
finite element (FE) methods together in the same simulation. Hence, the procedure will be
to compute the steady-state temperature distribution throughout the pipe layers with a finite
volume conjugate heat transfer analysis. Once this is done, the temperature data will be
mapped onto a finite element model of the pipe for stress analysis, which will be done through
the Specified Temperature Load model. The latter allows for a temperature profile specification
for the solid region, which is then used by the FE Stress solver to compute the resulting

Figure 1: Problem to be modeled
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displacement.

The simulation strategy, including the model geometry and assumptions, is summarized below
in Tables 2, 3 and Fig. 2.

Table 2: Simulation strategy for thermal analysis.

Characteristic Solid Domain
Geometry Pipe with dimensions in Fig.

Assumtions and Models Materials: Concrete and Steel
Equation of state: Constant density
Multi-component solid
Coupled Solid Energy

Boundary Conditions Temperature at inner boundary: 50ºC
Specification at outer boundary: Conduction

Type of Analysis Three dimensional, steady

Discretization Finite Volume (FV)

Mesh Polyhedral cells

Stopping Criteria 50 iterations

2.2 Computational domain
The domain consists of two different regions, one for the fluid and another for the solid parts,
separated by the corresponding contact interface. The solid region has been modeled with a
multi-part solid physics model that allows different solid materials to be applied on a single
solid region.

The section of the x-y plane of the simulation is shown in Fig. ??. This section is then extruded
a distance of 25m, simulating the whole pipe, being the upper end that on the ground at z = 0
and the lower end a section which has constrained its displacements.

2.3 Physical modelling
Weight load

The upper surface of the pile is holding its own the weight as well as the building (F = 300kN).
This load adds up to a stress of:

σ = F + hρconcreteApileg

Apile

= 0.93300 MPa
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Table 3: Simulation strategy for stress analysis.

Characteristic Solid Domain
Geometry Same as FV Solid Domain

Assumtions and Models Materials: Concrete and Steel
Constitutive Equation: Linear Isotropic Elastic
Geometry: Linear
Finite Element Solid Stress
Optional: Specified Temperature Load

Boundary Conditions Constraints: Fixed displacement of lower surfaces
Mechanical loads: Pressure
Thermal loads: Calculated during thermal analy-
sis and then mapped onto the FE mesh

Type of Analysis Three dimensional, steady

Discretization Finite Element (FE)

Mesh Tetrahedral Elements

Stopping Criteria 3 iterations

Note that the depth h is 19.5m and not 20m. The pipe must also hold its own weight but does
not hold the weight of the house:

σ = hρsteelg = 1.4922 MPa (1)

Hydrostatic pressure

The water column imparts an outwards radial pressure onto the pipe’s inner diameter. This
pressure will be equal to:

P = ρwgz (2)

Rankine lateral earth pressure

For our calculation we need to calculate the force that the ground imparts onto our domain.
To do so we are given the recommendation to use Rankine theory with:

K0 = 1 − sinψ (3)
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First
step

Compute the temperature
distribution with the

Thermal Analysis models

Second
step

Map the temperature data
onto a finite element model
of the pipe for stress analysis

Third
step

Compute the stresses and
displacements with the
Stress Analysis models

considering the thermal load

Figure 2: Steps of the simulation

This theory holds for cohessiveless incompressible soils. This incompressibility forces our bound-
ary conditions to be of no radial displacement. The equation for pressure becomes:

P = K0ρgh (4)

Where

P is the pressure

K0 is coefficient of pressure

ρ is the soil density

g is the gravitational acceleration

h is the depth

Hence the relationship becomes:
P = (1 − sinψ)ρgz (5)

We are give the angle ψ as 30◦, so the equation simplifies to P = 1
2ρgz. Coincidentally the

density of the soil is twice that of water, so the Rankine pressure equivalent equivalent to the
hydrostatic pressure inside.

Contact between elements

Because the ground pushes inwards from the outside, and the water pushes outwards from
inside, we can deduce that the two bodies won’t break contact. This means we can enforce
the continuity of displacement and stresses on this border. That is, the two bodies will always
be in contact; and the force one enacts upon the other is reciprocated equally and in opposite
direction.
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Thermal problem

We are asked to consider a ground temperature of 30◦C and a water temperature of 50◦C. This
means there is a horizontal temperature change of 20◦C in only 0.3m (a gradient of 66.6◦C/m),
whereas the vertical gradient is negligible at this depth. Hence, we can consider that all heat-
flow is horizontal and neither the pipe nor the pile carry heat upwards or downwards.

The pile and pipe are in contact, thus they must have the same temperatures and heat-flows
in the contact region to preserve continuity.

2.4 Boundary conditions
Now that the problem has been discussed, we can move onto a more mathematical point of
view. To solve the assignment we have a boundary value problem and hence we must define
these boundary values or conditions. This section formally describes the boundary conditions
expressed less formally in the physical modelling discussion.

Elastic deformation boundary conditions

Starting with the prescribed displacements (Dirichlet boundary conditions):

• The interface between pipe and pile has a equal-displacement condition between the two
materials.
This lowers the total rigid body degrees of freedom to six (the two bodies behave as one).

• The bottom surface is locked in vertical displacement. This has no physical reasoning.
It simply means all other displacements will be measured relative to this one’s real (yet
unknown) value.
This restricts rigid-body degree of freedom uz.

• The outer boundary is locked in displacement in radial direction.
This locks rigid body translation and rotation (ux, uy, θx, θy).

• The symmetry plane x = 0 (both geometry and loads as symmetrical across this plane)
is locked in displacement along the X axis.
This restricts the last rigid body degree of freedom (θz).

The loads (Neumann boundary conditions) are:

• The interface between pipe and pile has a equal-stress condition between the two mate-
rials.

• The top concrete surface supports a load of 0.933 MPa.

• The top steel surface supports a load of 1.4922 MPa.

• The outer surface supports an inwards radial load LR = LR(ψ, z) due to lateral earth
pressure.
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• The inner boundary supports an outwards radial, axially symmetrical load Lh = Lh(z)
due to hydrostatic pressure.

Thermal boundary conditions

Starting with prescribed temperatures (Dirichlet boundary conditions):

• The interface between pipe and pile has a equal-temperature condition between the two
materials.

• The inner surface is at 50◦C

• The outer surface is at 30◦C

The prescribed heat-flows (Neumann boundary conditions) are the following:

• The interface between pipe and pile has a equal heat-flow condition between the two
materials.

• All top and bottom, concrete or steel surfaces allow no heat to flow through

2.5 Grid generation
The quality of the mesh will clearly influence the quality of the numerical schemes, irrespective
of the setup. For this reason it is important to check the mesh quality, as a better mesh will
give more accurate solution. The mesh is shown in figure 3. Note that in the end we did not
exploit the planar symmetry. The room for error was not worth the optimization gains.

Figure 3: Tetrahedral mesh.
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Figure 4: Residuals after three iterations.

3 Results discussion

3.1 Convergence and Mesh Independence
It is clear that the more accurate the mesh and boundary conditions are, the more accurate
the converged solution will be. For the present steady-state simulation, it is to be ensured that
the solution satisfies the following conditions:

• The Residuals have reduced to an acceptable value.

• The monitor plots have reached an acceptable value

For monitor plots it is understood the tracking of the main variables of the problem. Residuals
do not necessarily relate to quantities of engineering interest in the simulation, and that is why
the choice of the engineering quantity of interest (the most critical -the Stres Von Mises in the
current case-.) as well as the convergence criterion is important.

However, it is also important to check if the solution is independent of mesh resolution. For
this reason, as the convergence criteria has been met in the first case, the mesh will be refined
globally so that there are finer cells throughout the domain. In like manner, if the results are
the same (within the own allowable tolerance) , then the first mesh will be good enough to
capture the solution. Figure 4 shows the residuals after three iterations of the solver for the
mechanical loading. The refined mesh consists of 1 × 106 cells and the actual mesh used of
1 × 105 cells. The residuals are the same and the converged maximum variable only differs by
a few Pascals, therefore being the mesh with 1 × 105 cells enough to solve the problem.
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Figure 5: Analysis without thermal loads

3.2 Structural stresses
The first step was to calculate the stresses and displacements of the system at rest, without
any thermal inputs. This can be seen in figure 5. Unsurprisingly, the system is well within
the elastic domain. Because the steel pipe is more dense than the concrete pile, the pipe is
under more stress from its own weight than the pile, even though only the latter supports the
building on top. On top of this, steel has a higher Poisson coefficient causing it to be more
stressed than concrete on the horizontal plane.

3.3 Thermal stress analysis
Because our thermal load is axisymmetric, the temperature distribution can be solved analyti-
cally. Here is the solution

 T (r) = −0.8622 ln(r) + 48.364 0.15m < r < 0.20m

T (r) = −21.556 ln(r) + 15.058 0.20m < r < 0.50m
(6)

for our particular values of thermal conductivities and radii. The temperature at the steel-
concrete interface is of 49.755◦C, almost the same as the water. This is expected since the pipe
is much more capable of transfering heat than the concrete. We can calculate the expected
heatflow per meter of depth:

dq

dz
= −kdT

dr

dA

dz
= −k−0.8622

r
2πr = 271 W/m (7)

a considerable amount of power considering it can run 24/7.
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Figure 6 shows the stress and displacement fields during thermal loading. The already present
stress concentration at the bottom is exacerbated. The pipe once again is under more stress,
since it is both hotter and has a higher thermal expansion coefficient. This is added to the
stresses at rest.

Figure 6: Analysis during thermal loading

3.4 Computation of maximum water temperature increment
In the previous solution the maximum stress in the domain was just shy of 200 MPa. Figure 7
shows that the relationship between water temperature and peak stress is almost linear. The
pipe will yield at 89◦C since the yield limit of this steel is 500 MPa. It is a requirement for
the whole structure not to exceed this temperature, as the concrete part will yield at a higher
temperature as Figure 8 shows. In order to compute the maximum stress at this part, a probe
point is created attached to the lower surface of the interface with the steel part, where the
highest stresses are seen to occur. It is seen that the concrete part will yield at 116◦C since the
yield limit of the concrete is 30 MPa.

Next are a few ways in which the design could allow for higher temperatures, and why some
of the may not work. Note that some combinations are incompatible, so they are presented as
stand-alone.

1. Adhere or nail the pipe to the pile, so the vertical load is transmitted to the concrete.

2. Leaving a gap between pipe and pile, allowing the pipe to expand without pressing against
the pile may seem like a good option. However, this gap would have to be filled with
some fluid to allow the heat to flow, defeating the purpose of putting the pipe between
water and concrete.

3. Use a material with a lower elastic modulus, so stress doesn’t shoot up when it heats up
and has nowhere to expand. PVC, with an elastic modulus in the single digit Gigapascals,
is a good candidate. It melts between 100 and 260 ◦C depending on the additives, so
the proper PVC pipe could fill the steel pipe’s role. Its lower weight would also mean
lower self-weight stress, however we’d still recommend to adhere it to the concrete pile so
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Figure 7: Linear relationship between water temperature and maximum stress of steel.

Figure 8: Linear relationship between water temperature and maximum stress of concrete.

it doesn’t have to support itself. Its lower conductivity would not matter since its very
thin.

4. Pre-stress the pipe. By having it under traction during installation we would, for all
intents and purposes, increase its compression yield point at the expense of lowering its
traction yield point. The pipe could only be under traction under very cold thermal load,
at which point the water freezing would be a much more pressing issue.

11



This pre-stress could be supported two ways: if supported by the pile, we’d have to
be careful not to cause the latter to yield by compression. Alternatively we could simply
hang the pipe from above and have its own weight cause it to be under traction.

3.5 Temperature-dependent elastic modulus
The strategy which has been followed consists of a quadratic interpolating polynomial with
function E(T ) = 1 × 104(0.0035T 2 − 0.0640T + 2.8925). With this function and the temper-
ature map which has been obtained with the thermal problem, it is possible to determine the
Young’s modulus at each element of the concrete mesh. The polynomial is able to approximate
the values at each temperature with acceptable precision, as shown in Table 4. The resulting
distribution is shown in figure 9.

The result can be seen in figure 10. The left column shows the solution of the previous sections,
and the right column the solution with dependent young modulus. Both use the same color
scale for easier comparison.

Temperature (ºC) Young’s modulus
(MPa)

Actual Young’s
modulus (MPa)

15 27200 27000
25 34800 35000
35 49400 50000
45 71000 70000
55 99600 10000

Table 4: Polynomial values of the Young’s modulus compared with the proposed ones.
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Figure 9: Young Modulus distribution
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Constant Young modulus Temperature-dependent Young modulus

(a) Stress field for constant E (b) Stress field for dependent E(T )

(c) Displacement field for constant E (d) Displacement field for dependent E(T )

Figure 10: Results of the temperature-dependent Young modulus analysis.
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4 Concluding remarks
This work has laid out interesting conclusions over the performance of solid stress models with
additional temperature loads on evaluating the approximate numerical solution of the stresses
and displacements on a pipe section. The simulation was a bit tricky to perform but in the
end the results were all within expected values. Special care had to be taken when mapping
the temperature map to the finite element mesh, as a mesh of similar accuracy is needed for
results to be correct. Another worth-mentioning issue was the fact that Star-CCM+ stores the
temperature map in Kelvins, so this has to be considered when evaluating the interpolating
polynomial. Both of us come from aerospace backgrounds and this project allowed us to explore
the use of numerical analysis tools in a field new to us. It also introduced us to the concept
of Rankine lateral earth pressure. It was also interesting to apply these tools to an—albeit
simplified—real problem.
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5 Appendix

5.1 Work division
Initially we planned on using two different solvers in order to compare results, but only one of
us managed to get them correctly (Pau Márquez). Therefore, most of the results are obtained
from his simulation, whereas Eduard Gómez’s simmulation work is not featured due to it being
incorrect. This was compensated for by taking a greater workload at writing the report and
presentation.

• Introduction: Eduard Gómez

• Methodology: Mixed. Eduard did most of the boundary conditions and Pau did most of
the meshing subsection.

• Results: Most of the background work was done by Pau but most of the written report
was done by Eduard, except for the convergence subsection.

• Conclusion: Done half and half.

• Slideshow: Done mostly by Eduard.

Note that we both read all the document and gave each other feedback, so no part was done
exclusively by either of us.
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