1D FEM Problem - Obtaining Stiffness matrix

Consider the differential equation that models a physical problem,

$$
-u^{\prime \prime}=f, \text { for } x \in[a, b]
$$

with boundary conditions, $u(a)=u(b)=0$
Multiply by a weight/test function v and integrate in the whole domain, we get,

$$
\int_{a}^{b}-v u^{\prime \prime} d x=\int_{a}^{b} v f d x
$$

Using Integration by parts on the LHS, we get,

$$
\int_{a}^{b} v^{\prime} u^{\prime} d x-\left[v^{\prime} u\right]_{a}^{b}=\int_{a}^{b} v f d x
$$

Now, after imposing the boundary conditions, we get the weak form of the problem as,

$$
\int_{a}^{b} v^{\prime} u^{\prime} d x=\int_{a}^{b} v f d x
$$

The FE approximate solution is obtained by replacing u with a trial solution \bar{u} that is built using a finite element mesh where we associate a shape function to each node of the FE discretisation.

Figure 1: Shape functions

The following approximation to u is used in the numerical solution of the weak form,

$$
u(x) \approx \bar{u}(x)=\sum_{i=1}^{N+1} u_{j} N_{j}(x)
$$

Substituting the approximation and $v=N_{i}$, we get,

$$
\begin{aligned}
& \int_{a}^{b} N_{i}^{\prime}\left(\sum_{i=1}^{N+1} u_{j} N_{j}^{\prime}(x)\right) d x=\int_{a}^{b} N_{i} f d x \\
& \sum_{i=1}^{N+1}\left(\int_{a}^{b} N_{i}^{\prime} N_{j}^{\prime} d x\right) u_{j}=\int_{a}^{b} N_{i} f d x
\end{aligned}
$$

Page 1

The above equation can be written in the form,

$$
K u=f
$$

where,

$$
K_{i j}=\int_{a}^{b} N_{i}^{\prime} N_{j}^{\prime} d x, \quad f_{i}=\int_{a}^{b} N_{i} f d x
$$

Now, we do the element-by-element assembly For a 2-noded (linear) element,

Figure 2: Element shape function

$$
\begin{aligned}
& N_{1}^{(e)}=\frac{x_{2}^{(e)}-x}{x_{2}^{(e)}-x_{1}^{(e)}}=\frac{x_{2}^{(e)}-x}{l^{(e)}} \\
& N_{2}^{(e)}=\frac{x-x_{1}^{(e)}}{x_{2}^{(e)}-x_{1}^{(e)}}=\frac{x-x_{1}^{(e)}}{l^{(e)}} \\
& \frac{d N_{1}^{(e)}}{d x}=\frac{-1}{x_{2}^{(e)}-x_{1}^{(e)}}=\frac{-1}{l^{(e)}} \\
& \frac{d N_{2}^{(e)}}{d x}=\frac{1}{x_{2}^{(e)}-x_{1}^{(e)}}=\frac{1}{l^{(e)}}
\end{aligned}
$$

The global stiffness matrix is then constructed by assembling the element contributions. For a linear element the global matrix is assembled as,

$$
K=\left[\begin{array}{ccccccc}
K_{11}^{(1)} & K_{12}^{(1)} & & & & & \\
K_{21}^{(1)} & K_{22}^{(1)}+K_{11}^{(2)} & K_{12}^{(2)} & & & & \\
& K_{21}^{(2)} & K_{22}^{(2)}+K_{11}^{(3)} & K_{12}^{(3)} & & & \\
& & K_{21}^{(3)} & K_{22}^{(3)}+K_{11}^{(4)} & & & \\
& & & & \ldots & & \\
& & & & & K_{22}^{(n-1)}+K_{11}^{(n)} & K_{12}^{(n)} \\
& & & & & K_{21}^{(n)} & K_{22}^{(n)}
\end{array}\right]
$$

where, n is the number of elements. We know that, for each element,

$$
K_{i j}^{(e)}=\int_{x_{1}^{(e)}}^{x_{2}^{(e)}} N_{i}^{\prime} N_{j}^{\prime} d x= \begin{cases}\frac{1}{l^{(e)}} & \text { if } i=j \\ -\frac{1}{l^{(e)}} & \text { if } i \neq j\end{cases}
$$

Hence, we get the global stiffness matrix as,

$$
K=\left[\begin{array}{cccccc}
\frac{1}{l^{(1)}} & -\frac{1}{l^{(1)}} & & & & \\
-\frac{1}{l^{(1)}} & \frac{1}{l^{(1)}}+\frac{1}{l^{(2)}} & -\frac{1}{l^{(2)}} & & & \\
& -\frac{1}{l^{(2)}} & \frac{1}{l^{(2)}}+\frac{1}{l^{(3)}} & -\frac{1}{l^{(3)}} & & \\
& & -\frac{1}{l^{(3)}} & \frac{1}{l^{(3)}}+\frac{1}{l^{(4)}} & & \\
& & & & \ldots & \\
& & & & & \frac{1}{l^{(n-1)}}+\frac{1}{l^{(n)}} \\
& & -\frac{1}{l^{(n)}} \\
& & & & & -\frac{1}{l^{(n)}} \\
l^{(n)}
\end{array}\right]
$$

Therefore, if the number of elements $n=6$ and the length of the elements are given as, $l^{(1)}, l^{(2)}, l^{(3)}, l^{(4)}, l^{(5)}$ and $l^{(6)}$ as shown in the figure below

Figure 3: 1D domain - number of elements $=6$
we get the following global stiffness matrix,

$$
K=\left[\begin{array}{ccccccc}
\frac{1}{l^{(1)}} & -\frac{1}{l^{(1)}} & & & & & \\
-\frac{1}{l^{(1)}} & \frac{1}{l^{(1)}}+\frac{1}{l^{(2)}} & -\frac{1}{l^{(2)}} & & & & \\
& -\frac{1}{l^{(2)}} & \frac{1}{l^{(2)}}+\frac{1}{l^{(3)}} & -\frac{1}{l^{(3)}} & & & \\
& & -\frac{1}{l^{(3)}} & \frac{1}{l^{(3)}}+\frac{1}{l^{(4)}} & -\frac{1}{l^{(4)}} & & \\
& & & -\frac{1}{l^{(4)}} & \frac{1}{l^{(4)}}+\frac{1}{l^{(5)}} & -\frac{1}{l^{(5)}} & \\
& & & & - & -\frac{1}{l^{(5)}} & \left.\frac{1}{l^{(5)}}\right) \frac{1}{l^{(6)}} \\
& -\frac{1}{l^{(6)}} \\
& & & & & -\frac{1}{l^{(6)}} & \frac{1}{l^{(6)}}
\end{array}\right]
$$

Now, with the given dirichlet boundary conditions, $u(a)=u(b)=0$
We remove the corresponding rows and column from the matrix and the stiffness matrix is reduced to,

$$
K=\left[\begin{array}{ccccc}
\frac{1}{l^{(1)}}+\frac{1}{l^{(2)}} & -\frac{1}{l^{(2)}} & & & \\
-\frac{1}{l^{(2)}} & \frac{1}{l^{(2)}}+\frac{1}{l^{(3)}} & -\frac{1}{l^{(3)}} & & \\
& -\frac{1}{l^{(3)}} & \frac{1}{l^{(3)}}+\frac{1}{l^{(4)}} & -\frac{1}{l^{(4)}} & \\
& & -\frac{1}{l^{(4)}} & \frac{1}{l^{(4)}}+\frac{1}{l^{(5)}} & -\frac{1}{l^{(5)}} \\
& & & -\frac{1}{l^{(5)}} & \frac{1}{l^{(5)}}+\frac{1}{l^{(6)}}
\end{array}\right]
$$

