
Xavier Corbella Coll 

1 
 

Assignment 3: Non-linear Elastic Block 

a) Identify in the code (file, lines) the following items: 
(a) The definition of the example (loading, geometry) 

The choice of the example is done in line 8 of file “main_buckling.m”.  

The definition of the loading and geometry of the example is done in file “preprocessing.m”. From 
line 8 to 59, the basic parameters used to define the geometry (the coordinates of two vertices are 
defined), mesh (the number of divisions in both x and y directions) and loading (which is the 
magnitude of the applied force) for the chosen example are defined, as well as the selection of 
applied forces or applied displacements. In these lines, the vector lambda, which defines the 
increments of the load, is also defined. From line 61 to 75 the matrices X and T of the mesh are 
created (using, amongst other, the function “CreaMalla”). The setting of the loading and boundary 
conditions are finished in lines 108 to 136. 

(b) The choice of the solution method (Newton’s method with or 
without line-search) 

The choice of the solution method is done in lines 18 and 20 of file “main_buckling.m”. First, the 
solver: vanilla Newton-Rapshon, Newton-Rapshon (NR), Modified NR, L-BFGS or Conjugate 
Gradient. However, in the function “Equilibrate” only the Newton-Rapshon and  its vanilla and 
modified versions are implemented, so both the L-BFGS of Conjugate Gradient are actually not 
available. In line 20, the line-search method can be activated or deactivated. 

Other options can be selected from line 14 to 31 of the file “main_buckling.m”, such as the 
maximum number of iterations, the tolerances used or the type of line-search. 

(c) The implementation of the solution method 
The different solution methods are implemented between lines  9 and 94 of “Equilibrate.m” file. If 
the line-search option is activated, the “LineSearch” function is called. Two different versions of 
the line-search method are implemented in file “LineSearch.m”: A “simple backtracking version” 
or a version which uses Matlab functions.   

(d) The implementation of the incremental-iterative strategy, with 
smart initial guesses for imposed displacements 

The incremental-iterative strategy is implemented in lines 66 to 97 of “main_buckling.m” as a for 
loop on the load increments. The initial guesses for the displacements are implemented in lines 70 
to 74 (only used in examples 1 and 2, the other ones do not have imposed displacements). 

(e) The introduction of random perturbations in the initial guesses 
of the solution method 

The introduction of random perturbations in the initial guesses of the solution is implemented in 
line 76 of file “main_buckling.m”. This line is written as a commentary, but random perturbations 
can be implemented just removing the symbol “%”. 
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Several conclusions arise from this work. First, it can be concluded that the linear analysis can only 
be used for very small deformations. For large deformations, the buckling modes can be used to 
know if buckling appears in the problem, but the solution obtained is very poor. It can also be 
concluded that the non-linear problem is non-stable, has no unique solution, there is no symmetry 
with respect to the sign of the loads and there is no proportionality with respect to the loads. This 
makes the non-linear problem much harder to solve and produces the need of the utilization of 
techniques such as the line-search method, the utilization of smart initial guesses and an 
incremental-iterative strategy and the introduction of small random perturbation. However, not 
all these methods are necessary or useful for every case, so the solution of different cases may 
need the utilization of different techniques.  


