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Introduction

In this assignment, we experiment with the given nonlinear code for elasticity. We identify the
code blocks that relate to importing the material properties, problem definition and solution
methodology based on Newton Raphson and line search methods. We then run various examples
of problems and discuss the results to compare the solutions obtained from linear and nonlinear
analysis.

The main file for the code is main_buckling.m and main_incremental_iterative.m. Both
codes implement the same methodology but the former includes the option to introduce initial
geometric perturbation for the buckling analysis. This will become important for examples 2, 3,
4 and 5 which is concerning beams and archs. We will use the latter code for example 0 and 1
which only includes upsetting of a block.

2

Code identification

To identify the different sections in the code, we use main_buckling.m. It is more comprehensive
as it includes the perturbations for buckling.

1.

The main file for the code is main buckling.m. Line 10 in this calls for the function
preprocess.m. This function contains all the geometry details, material details for dif-
ferent problems cases. It accepts the example we are dealing with and the material to
output details such as x and y limits of the problem, meshing of the domain with specified
size along x and y directions, Gauss quadratures needed for integration, material properties
and loading and boundary conditions (displacements).

The choice of solution method is specified with options.method in line 18 and option to
enable line search algorithm is found in line 20 of the file main_buckling.m

In main buckling.m, the force is incremented in the for loop in line 68. For each force
increment, the equilibrium position is calculated using the function Equilibrate.m in line
79. Here, the Newton Raphson method is implemented as case 1 in line 36 where the
increment dx is calculated for until equilibrium is reached. It outputs the new equilibrium
position.

. Imposed displacements are applicable only for Case 1 and 2 in example. As mentioned

earlier, the force is incremented in line 68 of main buckling.m. For these two cases, the
coordinates of the mesh are initially guessed in switch statements line 70 according to force
increment.

Perturbations are introduced in the geometry for buckling cases in lines 54 to 56 in main_buckling.m.
meshl.z0 is perturbed as a result. For random perturbations are introduced in line 77 with
x=x+rand(size(x))*.001 statement.
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Figure 1: Compression force modl.force = —3. In (b), undeformed mesh (blue), linear deforma-
tion (black) and nonlinear deformation (red)
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Figure 2: Tensile force modl.force = 3. In (b), undeformed mesh (blue), linear deformation
(black) and nonlinear deformation (red)

3 Test cases

In this section, we compare the linear and nonlinear behaviours of the elastic block, beam and
arch for different test scenarios. We provide effect of introducing line-search algorithm to Newton
Raphson and also the effect of perturbations, which are random in nature.

3.1 Example 0

In this case a square elastic block is subject to two different kinds of forces, one compressive and
the other tensile. We do not employ line-search in this case and we present the result in fig[I] and
fiel)

Linear analysis makes several more assumptions than a nonlinear analysis. The distinguishing
feature as a result is that linear analysis cannot capture the so called material and geometric
nonlinearities. The geometric nonlinearity can be captured when we apply equilibrium equations
in the deformed state and not restricting ourselves to small deformations. St. Venant’s principle
is also an assumptions of linear elasticity. The material nonlinearities are captured when the
constitutive model is such that nonlinearities are permitted. These differences separate linear and
nonlinear analysis.
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Figure 3: Tensile displacement until twice the original width. In (b), undeformed mesh (blue),

linear deformation (black) and nonlinear deformation (red)

In fig I, we can see that the linear behaviour is very close to nonlinear behaviour for very
small displacements. But for large deformation, the assumption made by linear case (small de-
formation assumption) does not hold good. For compression, we can see that the linear case
over-estimates the displacement for a given force. This is due to non-consideration to changes in
area of cross section. But in tensile case [2] the linear analysis is conservative in its approximation
and does not take into consideration the nonlinearities in material(such as yielding) and geometry
nonlinearities(such as change in area of cross section). Hence it shows good agreement only for
small displacements and for large forces, the displacement expected is much lower than that for a
nonlinear study. This shows the drawbacks of a linear analysis.

We can observe that the behaviour of the material for compression and tension are the same
for the linear analysis. They have the same slope in fig[[]and fig2] This shows that the linear study
does not distinguish between the two behaviours because it is based on the original configuration
of the block rather than on the current configuration.

3.2 Example 1

In this test case, the block is subject to a prescribed displacement. The displacement is tensile
pull until twice the original width and compressive push until half the original width. They are

depicted in figl] and figd] .

In fig 3] we see when nonlinearities are considered, the material deforms in stages, the change
in area of the deformed body is taken into account. Thus we obtain a force-displacement diagram
that shows us the variation of force required to cause the current deformation. Material shows
higher resistance initially and then, for higher forces, the resistance to deformation is low. But
the linear analysis predicts the same behaviour for small and large deformation. Hence it predicts
a very large force for the displacement condition. Also the figure shows us two singularities in the
block for linear analysis. Thus it predicts a failure even when its is not true. In figfd] the nonlinear
material behaviour is captured where for small deformation, we expect small resistance and the
resistance increases much faster for larger deformation. But the linear study disregards this and
continues the trend of smaller force proportional to the deformation.

As commented in the previous section, we see the same behaviour in linear study for a tension
and compression study (ﬁ and ﬁ. While in nonlinear study, they are treated differently
because it is based on the changing shape of the block.
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Figure 4: Compressive displacement until half the original width. In (b), undeformed mesh (blue),
linear deformation (black) and nonlinear deformation (red)

3.3 Example 4 and 5

Here an arch problem is considered. Example 4 is related to an arch with dead load at the centre.
Example 5 is an arch with dead load at the supports. The main idea to study the necessity
of line-search in Newton Raphson. We would like to note that random perturbations are not
necessary in the present case. Here, the solution does not depend on perturbations since there can
be no ‘upsetting’ due to additional random irregularities in the position. It is confirmed by the
simulation too. We do not observe any change in behaviour when the perturbations are present
or absent.

Line-search with Newton Raphson eliminates the unstable equilibrium points and chooses
local minima that is stable. Saddle points and maxima are thus eliminated and stable results are
obtained. This is because Newton Raphson method does not distinguish between different kinds
of local maxima or minima. Thus line-searchi is a necessary tool in such cases.

We observe that for example 4, when line-search was not used, the random perturbations caused
the solution to diverge and equilibrium was not obtained. But when line search was utilized, we
were able to observe convergence in the solution error and thus a stable solution was obtained as
shown in figh| .

We can observe in figf] that the linear behaviour is very different from the nonlinear behaviour.
In the nonlinear behaviour, we observe a quick jump in the displacement when the load is increased
around 0.03. This is a ‘snapping mechanism’ where the arch observe a sudden collapse and large
deformation for very small increase in load. This is not necessarily a bad phenomenon. In fact,
such nonlinear behaviours are used in many applications such as a snapping mechanism in opening
and closing of bottle cap, snapping hair clips etc. Such behaviour is completely ignored by the
linear analysis. The deformed mesh give us an idea of the large discrepancy in the final deformation
predicted by both analyses.

The above nonlinear behaviour is only captured and stabilitiy is restored due to the line-search
algorithm that selects the suitable stable equilibrium point.

We observed a similar situation for example 5 where a line-search with Newton Raphson was
necessary for convergence of error and to obtain a stable solution as shown in fig6] Without
line-search we obtained an unstable, meaningless solution.

The nonlinear study predicts the ‘snapping behaviour’ as in the previous example. This is not
captured by the linear study. It is thus inferior in simulating real physics in the phenomenon.
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Figure 5: Stable solution of Example 4 using line-search. In (b), undeformed mesh (blue), linear
deformation (black), nonlinear deformation (red), first buckling mode (green) and second buckling
mode (magenta)
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Figure 6: Stable solution of Example 5 using line-search. In (b), undeformed mesh (blue), linear
deformation (black), nonlinear deformation (red), first buckling mode (green) and second buckling
mode (magenta)
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Figure 7: Example 4 (no linesearch, no perturbation). In (b), undeformed mesh (blue), linear
deformation (black), nonlinear deformation (red), first buckling mode (green) and second buckling
mode (magenta)
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Figure 8: Example 4 (no linesearch, with perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second
buckling mode (magenta)

4 Example 2 and 3

In this section we look at example 2 which deals with a slender beam subject to prescribed dis-
placement and at example 3 which deals with a slender beam subject to a dead load. We shall
analyse the problem in the presence of random perturbations and the effect of use of line-search in
Newton Raphson. The summary of result are presented in the table below. ’Is’ denotes line-search
and ‘per’ denotes perturbation.

1s(no) per(no)

1s(no) per(yes)

Is(yes) per(no)

Is(yes) per(yes)

Example 2 no buckling no buckling no buckling buckling
Example 3 no buckling buckling buckling buckling
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(b) Deformed and undeformed meshes

Example 4 (with linesearch, no perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second
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(b) Deformed and undeformed meshes

Figure 10: Example 4 (with line search, with perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second

buckling mode (magenta)
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Example 2 and 3 show the importance of perturbations for problems with symmetric loading
conditions.

In example 2, the slender beam is subject to prescribed displacement and we see different cases
presented in fig7] fig8] figd] and figI0] When either perturbations or line-search are not employed,
we do not see a drastic nonlinear behaviour (ﬁ@, ﬁ and ﬁ. The nonlinear behaviour is close
to linear behaviour for small deformations as expected. This is the case of the beam moves along
its axis. This is an ideal nonlinear behaviour and all the cases provide the same solution to the
problem.

Cases such as above occur when there are absolutely no forces perpendicular to the beam.
But they are not realistic. In reality, when axial displacements are enforced, small fluctuations
are observed in the perpendicular direction and this is the trigger for buckling. These random
perturbations are a necessary part of realistic modelling and when introduced with line search
algorithm to capture the stable equilibrium, we obtain buckling as shown in figl0] Without line-
search, this is not captured (ﬁ This shows us that perturbation tend to destabilize the solution
and line search tends to restore stability and both are necessary to obtain nonlinear behaviour
in the presence of no external disturbance in the solution domain. (We can observe the same for
classical flow cases such as flow past a cylinder. To observe Von Karman vortices, we need certain
initial perturbation in velocity field or slightly unsymmetric boundary conditions. The latter is
applied by placing the cylinder at a slightly different distance to the walls on either sides. In the
absence of disturbance, we observe a flow similar to incompressible flow past a cylinder)

For example 3, the slender beam is subject to axial forces in the form of dead load and we see
different cases presented in figl1] figl2] figl3] and figl4] The problem contains inherent source of
fluctuation and it is easy to obtain the buckling if either line-search or random pertrubations are
employed. This is a realistic simulation (ﬁ ﬁ and ﬁ ) since they all agree with respect to
the force-displacement curve. Here, either the random fluctuation is sufficient to drive the solution
towards buckling nonlinear behaviour in the presence or absence of line-search. Consequently, line-
search is sufficient to detect and capture the stable equilibrium and arrive at a buckling solution
in the presence or absence of random fluctuations. But, when both are absent(ﬁ, we do not
observe any nonlinearity. It is exactly depicted by the linear behaviour.

We can observe that in figl2] and figl3] we obtain the same force-displacement graphs, we do
not see buckling in the same side. This shows that such behaviour are inherently non-unique.
This is because the fluctuations inflicting the change are random in nature.

Note on magnitude of random perturbations: We noticed that when the perturbations are
below certain value, it did not trigger the nonlinear behaviour. Hence a small amount of per-
turbations is necessary for destabilizing the solution such that the stability can be then restored
by line-search. But above a certain value of perturbation, the system lost the stability totally
and couldn’t be restored. Thus it was advisible to work within a small window of perturbation,
which is lies between the above said minimum and maximum. Also we need to note that for any
value within this range of perturbations, no significant variation in solution was observed. Thus
perturbations are necessary components for small destabilization which needs to be restored and
this leads to observe nonlinear behaviour.

5 Conclusions

In analysing example 0 and 1 we learnt that linear study is insufficient and is only valid for small
deformations. At large deformation, we obtain a nonrealistic result. But a non-linear solution
captures behaviour for all values of deformation.

Linear study gives symmetric results for opposite boundary conditions. It cannot distinguish
between compression and tension other than the sign. It doesn’t take into account material and
geometric nonlinearities and predicts a similar behaviour. The slopes of the force-displacement
curves are the same in tension and compression. But on the other hand, nonlinear behaviour is
different for these two phenomenon and the force-displacement curves are hence different.

In example 4 and 5, we notice that the ‘snapping behaviour’ captured in the nonlinear analysis
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Figure 11: Example 5 (no linesearch, no perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second
buckling mode (magenta)
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Figure 12: Example 5 (no linesearch, with perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second
buckling mode (magenta)
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Figure 13: Example 5 (with linesearch, no perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second

buckling mode (magenta)
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Figure 14: Example 5 (with linesearch, with perturbation). In (b), undeformed mesh (blue),
linear deformation (black), nonlinear deformation (red), first buckling mode (green) and second

buckling mode (magenta)

Page 10

Sanjay Komala Sheshachala
sanjayks01@gmail.com



Assignment: Nonlinear Elastic block

is absent in linear analysis. It also indicates how line search algorithm is necessary for Newton
Raphson method to recognise stable points and obtain equilibrium nonlinear solution even in
the absence of random perturbations. For above cases, since there were no perturbations, and the
problem is not susceptible to random variations in solution, we observe stable and unique solution.

In example 2 and 3, we learnt that perturbations are important to bring out the nonlinear
behaviour of materials, otherwise we will only notice the behaviour predicted by linear analysis.
For problems with symmetric boundary conditions we observed that perturbations are necessary
to destabilize the system and line-search is necessary to restore the stability. In the above process,
the nonlinear behaviour of buckling was captured. We discussed an analogous behaviour in flow
past a cylinder. Also we observed that for problems with inherent instability, either random
perturbations or line-search was sufficient to produce the nonlinear behaviour. Perturbation, we
observed, will not necessarily lead to unique solutions.
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