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1 Problem:

The problem to solve is the parabolic PDE:

ut −4u = f in Ω =]0, 1[2

where the source term is given by:

f(x, y, t) = −3e−3t.

with the initial condition:

u(x, y, 0) = x2 + xy − y2 + 1

and the boundary conditions:

un(x = 0, y, t) = −y
un(x = 1, y, t) = 2 + y

u(x, y = 0, t) = x2 + e−3t

un(x, y = 1, t) = x− 2

2 Solution of the PDE:

The first step to solve the problem given us-
ing the pdetool of MATLAB was to define
the geometry (a square of length 1). Once
this was done we introduce the coefficients
of our equation in the PDE toolbox. After
this the boundary conditions (both Dirichlet
and Neuman) were defined using the Bound-
ary mode. Finally we introduce the Initial
Condition in the Solve window and we left
time to the default 0:10 as well as the Rela-
tive and Absolute tolerances. Once the prob-
lem was stated we created an initial mesh

Figure 1: Solution of the PDE using the ini-
tial mesh.Solution using the final mesh (be-
low) after four refinements.

with the default parameters of the applica-
tion. We saw that MATLAB created a mesh
with 10 equally elements at the four bound-
aries. Finally we proceeded to solve the prob-
lem with this first coarse mesh and we ex-
ported the mesh and the solution to MAT-
LAB Workspace. Then we repeated the same
procedure with four meshes refinements and
the solutions and meshes as well were ex-
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Figure 2: Convergence of the numerical so-
lution with respect to the element length.

ported to the Workspace for the error and
convergence analysis.

3 Element size effect:

In order to analyse the convergence of the nu-
merical solution computed with the pdetool
to the analytical solution we modify the er-
rorExample1 script in order to adapt it to
our problem. What we did was to for each
mesh discretization compute the maximum
difference of the last time step [T=10] nu-
merical solution respect the analytical solu-
tion. After that we plot the results in a loglog
plot versus the element length measured at
the lower boundary. Finally we compute the
slopes of the convergence criteria to be com-
pared with the theoretical ones. As it is seen
in Figure 2 the convergence order is expo-
nential because it is linear in a loglog plot,
and this is the expected convergence because
the mesh also is refined in a exponential way,
with half the length of previous mesh.

Slopes of the convergence curves
Slope 11 1.583890175986223
Slope 110 1.755350730317373

Slope 21 1.277316808151475
Slope 210 1.796989790218398

Slope 31 0.720003372647428
Slope 310 1.827171742342429

Slope 41 0.286313049018653
Slope 410 1.849007626906428

If now we want to see how the error is dis-
tributed along the whole domain we must
plot the error at each point, for instance for
time T=10. This is what we show in Fig-
ure 3 for the first refinement of the mesh.
The maximum error happens at the corners
(0,1) and (1,1). This is because there we have
prescribed the flux and the solution there is
subjected to the errors of all the elements
between them and the Dirichlet Boundary
(y = 0) where the error is 0.

Figure 3: Error distribution of Mesh 2 at
T=10.
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4 Time effect:

In order to see how is the solution affected
with an extension in the time end, we have
repeated the calculations for the five meshes
but for a final time one tenth the previous
ones, T=1. Of course as this is a time
dependent problem we will get a different
solution. However we are interested in
the precision and convergence order of the
numerical solution for this time.

In theory what we should expect from
this is that, as there are less calculations,
the error will be higher and the convergence
slower. This comparison can be seen in
Figure 2 and it is clearly stated that for T=1
the convergence is slower than for T=10.
Also in Table 3 it is shown that the slopes
of T=1 are smaller than the ones of T = 10.

Now we want to solve the same problem
but for time end T=50. One way of solv-
ing this is using the same PDE that we have
computed for T=1 and T=10 and extending
the calculations up to T=50. It maybe will
take longer but it will work. However look-
ing at the PDE, at T=50 the source term will
tend to zero. This is because:

f(x, y, 50) = −3e−150 = −2.1525×10−65 ≈ 0.

Therefore, our problem can be simplified to:

ut −4u = 0 in Ω =]0, 1[2

Also the time dependent boundary condition
can be expressed as:

u(x, y = 0, t) = x2 + e−150 ≈ x2

This simplifications will reduce time of cal-
culus and should approximate quite well our
problem. We have done a comparison be-
tween the numerical solution of the real PDE

Figure 4: Comparison between the numerical
result of the real PDE and the simplified one
for T=50 using Mesh 3.

and the simplified one for T=50. In Figure
4 we show that at T=50 there is very lit-
tle difference in using the real PDE or the
simplified one because it is of the order of
×10−14. This evidences that the simplifi-
cation we proposed could be used efficiently
and that the result will be almost the same
to the one of the extended PDE. Again the
highest differences are at the opposed bound-
aries to where we have prescribed the values
(Dirichlet boundary at y=0) because the er-
ror propagates throw the geometry.

5 Conclusions:

The PDE toolbox of MATLAB is an easy
interface and pretty effective way of solv-
ing small partial differential equations prob-
lems. We have proved the effectiveness of
this application by solving the same problem
with different mesh sizes and it came clear
that the convergence is proportional to the
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element size as expected. In addition we
have checked that fewer time steps means
fewer calculations so higher error at the end
time and slower convergence. Finally we ran
the code to solve the problem for T=50 and
we show that for this problem and for long
times, the solution will be almost stationary
so we can dismiss the time dependence of
the source term and of the boundary as well
without effecting too much the solution.
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