
Xavier Corbella Coll

1

Assignment 1: Transfinit Interpolation (TFI)

1) In file linearTFi.m write the code corresponding to functions:

 createInnerNodes
function [phi]=createInnerNodes(phi)
%%%

%%
% Function to create the inner nodes of the domain
% nOfChiElems => Number of elements in the chi direction
% nOfEtaElems => Number of elements in the eta direction
% phi => Temporary multi-array to store the coordinates of grid
% points of dimension: nOfChiNodes x nOfEtaNodes x 2
%%%
nOfChiNodes=size(phi,1);
nOfEtaNodes=size(phi,2);

% We compute the computational coordinates
chi=linspace(0,1,nOfChiNodes);
eta=linspace(0,1,nOfEtaNodes);

for i=2:nOfChiNodes-1
 for j=2:nOfEtaNodes-1
 % First, we create the intermediate coordinates
 [u,v]=gridControlSpacing(chi(i),eta(j));
 % Second, we compute the physical coordinates
 phi(i,j,:)=U(u,v)+V(u,v)-UV(u,v);
 end;
end;
end

 U
function [p]=U(u,v)
%%%

%%
% Function to compute the univariate blending function U for a linear TFI
%%%

%%

p=(1-u)*boundary(0,v)+u*boundary(1,v);

end

 V
function [p]=V(u,v)
%%%

%%
% Function to compute the univariate blending function V for a linear TFI
%%%

%%

p=(1-v)*boundary(u,0)+v*boundary(u,1);

end

Xavier Corbella Coll

2

 UV
function [p]=UV(u,v)
%%%

%%
% Function to compute the tensor product function UV of the
% univariate blending function U and V for a linear TFI
%%%

%%

p=(1-u)*(1-v)*boundary(0,0)+(1-u)*v*boundary(0,1)+u*(1-

v)*boundary(1,0)+u*v*boundary(1,1);

end

2) In file gridControlSpacing.m write the code corresponding to function

singleExp:
function psi=singleExp(psi_ini, A)
%%%

%%
% Function to distribute points in the computational domain
% according to the single exponential spacing control function
%%%

%%

%My code
psi=(exp(psi_ini*A)-1)/(exp(A)-1);
end

3) Generate a structued mesh using your application for:

 A rectangular domain of height equals 4 and width equals 3

(example 1 in boundary.m file)

Using A=3 and 12 divisions in ξ direction and A=-3 and 24 divisions in η direction:

Xavier Corbella Coll

3

Using A=-3 and 12 divisions in ξ direction and A=3 and 24 divisions in η direction:

 A quarter of circular ring of inner radii equals 4, outer radii

equals 7 and angle

 (example 2 in boundary.m file)

Using A=3 and 12 divisions in ξ direction and A=-3 and 24 divisions in η direction:

Using A=-3 and 12 divisions in ξ direction and A=3 and 24 divisions in η direction:

Xavier Corbella Coll

4

4) Apply the developed application to a new geometry. To this end,

modify the file boundary.m and create a new domain. Present three

meshes concentrating nodes near different boundaries.

The new geometry created is a circle with radii 10. It may seem to not have four edges,

but the TFI method can be used dividing the circle in 4 different edges. The main

counterback using this method to mesh a circle is the 4 vertex nodes that will appear at

the contour of the circle and the distortion of the mesh around these artificial vertexes.

The m function used to define the boundaries is:

function [p]=boundaryCircle(chi,eta)
%%%

%%
% Function to create the geometry (boundary) of the domain for the four
% sides of the representation in the intermediate space:
% chi=0 (Chi0)
% chi=1 (Chi1)
% eta=0 (Eta0)
% eta=1 (Eta1)
%%%

%%
if chi==0
 p=boundaryChi0(eta);
elseif chi==1
 p=boundaryChi1(eta);
elseif eta==0
 p=boundaryEta0(chi);
elseif eta==1
 p=boundaryEta1(chi);
end
end

%%%
% CIRCLE Geometry: 4 edges with vertexes at chi and eta equal to +- %

&sqrt(R^2/2)
%%%

function [p]=boundaryChi0(eta)
 if eta<0.5
 p=[-x1+eta*2*x1,-sqrt(radi^2-(-x1+eta*2*x1)^2)];
 else
 p=[(eta-0.5)*2*x1,-sqrt(radi^2-((eta-0.5)*2*x1)^2)];
 end
end

function [p]=boundaryChi1(eta)
 if eta<0.5
 p=[-x1+eta*2*x1,sqrt(radi^2-(-x1+eta*2*x1)^2)];
 else
 p=[(eta-0.5)*2*x1,sqrt(radi^2-((eta-0.5)*2*x1)^2)];
 end
end

Xavier Corbella Coll

5

function [p]=boundaryEta0(chi)
 if chi<0.5
 p=[-sqrt(radi^2-(-y1+chi*2*y1)^2),-y1+chi*2*y1];
 else
 p=[-sqrt(radi^2-((chi-0.5)*2*y1)^2),(chi-0.5)*2*y1];
 end
end

function [p]=boundaryEta1(chi)
 if chi<0.5
 p=[sqrt(radi^2-(-y1+chi*2*y1)^2),-y1+chi*2*y1];
 else
 p=[sqrt(radi^2-((chi-0.5)*2*y1)^2),(chi-0.5)*2*y1];
 end
end

function [value]=radi()
 value=10;
end

function [value]=x1()
 value=sqrt(radi^2/2);
end

function [value]=y1()
 value=x1;
end

Using A=3 and 30 divisions in both ξ and η directions:

Xavier Corbella Coll

6

Using A=-3 and 30 divisions in both ξ and η directions:

Using 30 divisions in both ξ and η directions and A=-1 in ξ direction and A=1 in η direction:

Using A=0.01 and 30 divisions in both ξ and η directions:

