COMPUTATIONAL MECHANICS TOOLS

ASSIGNMENT 3: NONLINEARITY

PAULINA ANDRUSZKO

PROBLEM 1 - STEEL PLATE WITH A HOLE

A) ELASTIC MATERIAL

1. Plot the distribution of Von Mises stresses in the plate

B) PLASTIC MATERIAL $f_y = 460 \text{ N/mm}^2$

1. Plot the distribution of Von Mises stresses in the plate

C) MATERIAL WITH f_y = 460, plastic strain = 0, f_{y2} = 520, plastic strain = 5E-3

1. Plot the distribution of Von Mises stresses in the plate

2. Plot the force-time curve at point-set

D) MATERIAL WITH f_y = 460, plastic strain = 0, f_{y2} = 520, plastic strain = 2E-3

1. Plot the distribution of Von Mises stresses in the plate

PROBLEM 2 - PLATE WITH A FIXED PIN

A) ELASTIC MATERIAL

1. Plot the distribution of Von Mises stresses in the plate

2. Plot the force-time curve at point-set

B) Plate: MATERIAL WITH f_y = 460, plastic strain = 0, f_{y2} = 520, plastic strain = 5E-3

Pin: MATERIAL WITH f_y = 900, plastic strain = 0, f_{y2} = 1000, plastic strain = 2E-3

1. Plot the distribution of Von Mises stresses in the plate

2. Plot the force-time curve at point-set

C) Plate: MATERIAL WITH f_y = 460, plastic strain = 0, f_{y2} = 520, plastic strain = 5E-3

Pin: MATERIAL WITH f_y = 320, plastic strain = 0, f_{y2} = 400, plastic strain = 5E-3

1. Plot the distribution of Von Mises stresses in the plate

