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Abstract 
One of the issues that needs to be studied in order to improve the durability of a PEM fuel cell system is the 
management of the hydrogen feeding procedure. It has been demonstrated that its efficiency and durability are 
improved when using a hydrogen recirculation system.  

In this work, an ejector has been designed and manufactured to be implemented in an experimental PEM fuel cell Test 
Station to analyse how ejector based hydrogen recirculation systems affect PEM fuel cells. The proper design of an 
ejector must take into account several geometrical parameters that can only be studied using Computational Fluid 
Dynamics (CFD). Thus, a CFD model has been implemented with a 2D axisymmetric geometry and the standard k-ε 
model to solve the Favre-averaged Navier-Stokes equations. An experimental ejector has been used to validate the CFD 
model, obtaining a very good agreement between experimental results and the model. 

Finally, a parametric study has been done to find the optimum geometrical parameters for the ejector to be implemented 
in the Test Station.  
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1. Introduction 
The continuous and exponential increase in energy 
demand makes it necessary to develop alternative energy 
production methods that can substitute fossil fuels. The 
fact that the availability of these fuels is finite and that 
they have a harmful effect over the environment makes 
mandatory the investigation of new and more sustainable 
energy sources. 

A good alternative to replace fossil fuels is hydrogen. 
Hydrogen provides higher efficiency than fossil fuels and 
is environmentally friendly. A high advantage of 
hydrogen is that it is fully recyclable since it produces 
water that can be used as the raw material for hydrogen 
generation. Moreover, it can be used to produce energy by 
several different ways: by burning it, using it in a 
combustion engine or producing electricity through fuel 
cells. 

When properly designed, fuel cell systems can be a 
reliable and durable method to produce efficient and 
environmentally friendly energy for different 
applications. Amongst the various fuel cell technologies, 
Proton Exchange Membrane (PEM) fuel cells are 
considered the best candidate to replace the combustion 
engine because of their capability of high power densities, 
relatively high efficiency, low operating temperatures, 
quick start up, zero pollution and relatively long lifetime 
[1]. For the last years, significant progress has been made 
in means of achieving the optimum balance of cost, 
efficiency and durability. Fuel lifetime requirements vary 
significantly, ranging from 3 000 to 40 000 operating 

hours. In order to optimize the lifetime and efficiency of a 
PEM fuel cell, several conditions must be taken into 
account. Some of them are: reactant flow rates and 
composition, operating and environmental temperature 
and pressure, humidification levels, peak load 
requirements and required rate of transient responses [2]. 

A very important issue that has to be studied to improve 
the efficiency of a PEM fuel cell system is the 
management of the hydrogen feeding procedure. Two 
different designs can be considered: The dead-end mode 
and the flow-through mode. In the dead-end mode, the 
amount of hydrogen provided to the fuel cell stack is 
equal to the amount consumed by the fuel cell. This 
procedure leads to accumulation of impurities and water, 
fuel starvation and catalyst poisoning that makes it 
necessary to purge the anode with nitrogen. In the flow-
through mode, the amount of hydrogen provided to the 
fuel cell stack is larger than the amount consumed by the 
fuel cell. An excessive ratio of hydrogen has positive 
effects: It improves efficiency, helps to maintain the 
pressure difference between anode and cathode provides 
better water management, increases the lifetime of the 
membrane and reduces the response time to an increased 
power demand. However, unconsumed hydrogen means a 
waste of energy, decreasing the efficiency of the system. 
Thus, hydrogen must be recirculated. 

Hydrogen recirculation systems can be designed using 
either a compressor or an ejector. Compressors can work 
for a wide range of flow rates, but they require energy, 
need maintenance and usually use lubricants that can 
produce catalyst poisoning. Ejectors are more suited for 
PEM fuel cells: they have no moving parts, need almost 
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no maintenance and have a very 
structure. Ejectors use the energy of the hydrogen which 
is stored in a high pressurized tank to recirculate the 
anodic exhaust, so they have no parasitic power.

In this paper, a Computational Fluid Dynamics model is 
proposed to study the
used to design 
the core of an ejector based hydrogen recirculation system 
for an experimental PEM Fuel Cell.

2. Ejectors
Ejectors are devices used to induce a secondary flow by 
momentum and energy transfer from a high velocity 
primary jet 
applications, especially in industrial refrigeration, vacuum 
generation and 

The geometry of ejectors is composed by 4 main sections
(Fig. 1): primary nozzle, suction chamber, mixing 
chamber and 
which is a high
accelerates to subsonic speed (subcritica
sonic speed (critical mode). If
high enough, the flow reaches the sonic condition at the 
throat and expands outside the nozzle until its pressure 
reaches the pressure of the secondary stream.

The suction section is a c
flow can reach a condition near stagnation. The secondary 
stream enters through the suction inlet and it decelerates 
and increases its pressure in
Then it is accelerated 
low pressure reached by the main stream outside the 
nozzle and shear stress interaction
both flows. 

The mixing 
usually a constant area section, but can have a converging 
section at the inlet. The mixing between both flows is 
very complex and hard to 
they reach a point inside the constant
expansion of the main stream outs
the area of the secondary stream
pressure is high enough, a secondary throat app
secondary flow is choked before the mixing.

Ejectors usually have a diffuser at the outlet to bring the 
flow back to stagnation and recover pre
chamber must be long enough to allow the mixing of both 
flows and to reduce the velocity to a subsonic condition. 
If supersonic flow reaches the diffuser, a normal shock 
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Since this is a highly convective problem, the governing 
equations are not stable and it is 
convergence than for conduction
because the numerical solutions of the transport equations 
can exhibit oscillations and instabilities. In order to ensure 
the convergence of the model and obtain numerical 
stability it is necessary to use dif
methods [5]. 

The boundary conditions are the following

 Primary inlet:
plane wave analysis of the inviscid part of the 
flow 
specified by the stagnation values of the press
(Pp0
are measured at 
values of the turbulent kinetic energy (k) and the 
turbulent dissipation rate
information about the values of k and 
inlet, an approximation for the inlet distribution 
of these variables can be obtained from the 
turbulence intensity 
length scale 
as 5% and L
radius of the 

 Secondary inlet:
inlet but using the stagnation values of the 
secondary flow (

 Walls
by wall fu
for the velocity is a non
turbulent kinetic energy is subjected to a 
homogeneous Neumann condition
are assumed to be the

 Axisymmetric

 Outlet
subsonic. The back pressure (P
and 
condition and the outlet is assumed to be 
thermally insulated.

4. Experimental 
The CFD model has been validated experimentally in 
order to demons
flows and stoichiometry obtain
different pressure conditions. This experimental 
validation was carried out manufacturing an ejector and 
testing it with air. The geometry of the ejector used in the 
experimental
fabricated taking into account that another ejector 
have to be manufactured to be used in 
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4.2. Results of the experimental validation.

The ejector was tested for different pressure conditions 
and nozzle positions. In all the experiments done, the 
secondary pressure was controlled to be equal to 
pressure. The Nozzle positions (NXP) studied with 
Pb=Ps0=1.2 bar
NXP=1.5 mm was also used to work with P
barabs. 

The results obtained are depicted in 
and Fig. 9. As is shown in the figures, there is a very good 
agreement between the mass flows obtained with the 
model and the experimental results.
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୫୧୬
 

ure conditions of the 



Xavier Corbella Coll     
 

Page 6 

Bibliography 
[1] J. He, S. Y. Choe, and C. O. Hong, “Analysis and 

control of a hybrid fuel delivery system for a polymer 
electrolyte membrane fuel cell,” J. Power Sources, vol. 
185, pp. 973–984, 2008. 

[2] S. D. Knights, K. M. Colbow, J. St-Pierre, and D. P. 
Wilkinson, “Aging mechanisms and lifetime of PEFC 
and DMFC,” J. Power Sources, vol. 127, pp. 127–134, 
2004. 

[3] C. Liao and F. R. Best, “Comprehensive Gas Ejector 
Model,” J. Thermophys. Heat Transf., vol. 24, no. 3, 
pp. 516–523, 2010. 

[4] B. Huang, “A 1-D analysis of ejector performance,” 
Int. J. Refrig., vol. 22, no. May 1998, pp. 354–364, 
1999. 

[5] X. Corbella Coll, “Implementation and characterization 
of an ejector based hydrogen recirculation system for a 
pem fuel cell,” Universitat Politècnica de Catalunya, 
2015. 

[6] F. M. White, Fluid Mechanics, 4th ed. New York: 
McGraw-Hill, 1999. 

[7] Y. Zhu, W. Cai, C. Wen, and Y. Li, “Fuel ejector 
design and simulation model for anodic recirculation 
SOFC system,” J. Power Sources, vol. 173, pp. 437–
449, 2007. 

[8] Y. Zhu and P. Jiang, “Geometry optimization study of 
ejector in anode recirculation solid oxygen fuel cell 
system,” Proc. 2011 6th IEEE Conf. Ind. Electron. 
Appl. ICIEA 2011, no. 2, pp. 51–55, 2011. 

[9] F. Marsano, L. Magistri, and  a. F. Massardo, “Ejector 
performance influence on a solid oxide fuel cell anodic 
recirculation system,” J. Power Sources, vol. 129, pp. 
216–228, 2004. 

[10] A. Maghsoodi, E. Afshari, and H. Ahmadikia, 
“Optimization of geometric parameters for design a 
high-performance ejector in the proton exchange 
membrane fuel cell system using artificial neural 
network and genetic algorithm,” Appl. Therm. Eng., 
vol. 71, no. 1, pp. 410–418, 2014. 

[11] Y. Zhu, W. Cai, C. Wen, and Y. Li, “Numerical 
investigation of geometry parameters for design of high 
performance ejectors,” Appl. Therm. Eng., vol. 29, no. 
5–6, pp. 898–905, 2009. 

[12] H. K. Versteeg and W. Malalasekera, Introduction to 
Computational Fluid Dynamics, 2nd ed. Harlow: 
Person Education Limited, 2007. 

[13] Y. Bartosiewicz, Z. Aidoun, P. Desevaux, and Y. 
Mercadier, “Cfd-experiments integration in the 
evaluation of six turbulence models for supersonic 
ejector modeling,” Integr. CFD …, vol. 1, no. 450, 
2003. 

[14] Comsol, “The CFD module user’s guide.” pp. 1–510, 
2012. 

  

 


