

Seismic Design with Steel Sheet Piles

Communication Skills 1

January 2019

Index

- BACKGROUND OF THE STUDY
- BASIS OF DESIGN
- DYNAMIC ANALYSIS
- PSEUDO-STATIC ANALYSIS
- RESULTS
- CONCLUSIONS
- FURTHER STUDIES

Background of the study

- Seismic design study with steel sheet piles proposed by
 - ArcelorMittal in order to:
- Study their feasibility
- Stablish a design methodology
- According to Eurocodes and PIANC recommendations
- Calculation by means of 2D Plaxis
- Simple cases changing some design factors

Basis of design

Х

Dynamic analysis

Seismic input motion calibration

<u>Objective</u>: Obtaining the input seismic signal which gives us the design seismic spectrum at surface.

- 1D model of the soil column is modelled in 2D Plaxis
- The Earthquake is introduced in the model through an accelerogram
- The earthquake is propagated through the soil column until the surface

1st Iteration: Accelerogram associated to rock spectrum

Seismic input motion calibration: Fast Fourier Transform

Seismic input motion calibration: Fast Fourier Transform

Modification of the energy of frequencies under interest

Seismic input motion calibration: Fast Fourier Transform

Inverted Fourier Transform

Obtaining the modified accelerogram

Estimation of the seismic coefficient

The earthquake is introduced as an additional inertial force by means of the seismic coefficient (k_h)

$$k_h = \alpha \frac{S}{r}$$

Estimation of the seismic coefficient

The earthquake is introduced as an additional inertial force by means of the seismic coefficient (k_h)

Table 7.1 — Values of factor r for the calculation of the horizontal seismic coefficient

Type of retaining structure	r
Free gravity walls that can accept a displacement up to $d_r = 300 \ \alpha \cdot S \ (mm)$	2
Free gravity walls that can accept a displacement up to $d_r = 200 \alpha \cdot S \text{ (mm)}$	1,5
Flexural reinforced concrete walls, anchored or braced walls, reinforced concrete walls founded on vertical piles, restrained basement walls and bridge abutments	1

ArcelorMittal's proposal: r=1.67 (1/0.6) according to PIANC

Results with r=1.67 (k_h =0.24)

Passive wall distance too high for r=1.67

Results comparison: Bending moment distribution

Estimation of the seismic coefficient

Design seismic coefficient:

• kh=0,14g → r=2,8

Cases of the study

Case of study	System	Sea bed level
C_SS(10.50)	Passive wall	-10.50
C_SS(12.50)	Passive wall	-12.50
C_SS(14.50)	Passive wall	-14.50
C_SP(10.50)	Batter pile system	-10.50
C_SP(12.50)	Batter pile system	-12.50
C_SP(14.50)	Batter pile system	-14.50

Dynamic analysis: Bending moment distribution

Case	Maximum positive bending moment (kNm/m)	Maximum negative bending moment (kNm/m)
C_SS(10.50)	976	1398
C_SS(12.50)	2151	2131
C_SS(14.50)	2471	3672
C_SP(10.50)	913	1419
C_SP(12.50)	1388	2198
C_SP(14.50)	2190	3595

Dynamic analysis: Displacements

Head front sheet pile

Stability on permanent displacements

Pseudo-static analysis: Overall stability of the system (40 m tieback)

Conclusions

- The reduction factor might range between 2.5-3.
 - Overseas Coastal Area Development Institute of Japan proposes reductions between 50%-30% (factors between 2 and 3).
 - C.J.Habets, et.al (2018), "Model solutions for performance-based seismic analysis of an anchored sheet pile quay wall" defines factors between 1.8-2.
 - In Eurocode 1998-5 the maximum reduction factor is 2 and applicable to gravity walls.
- The reduction factor mainly depends on the ductility of the soil-structure system.

Further studies

- Different soil configurations need to be studied. In this case a single layer model has been used but at least the following has to be included:
 - Multilayered soils.
 - Cohesive soils.
- The effect of the steel sheet piles stiffness on the results has to be addressed.
- The plasticity on the steel has to be considered, in this case only linear elastic material has been used for the calculations.
- Hydrodynamic water pressures have to be included:
 - $\circ~$ Westergaard pressures as static loads (usual approach).
 - Coupled soil-structure-fluid interaction (not available in Plaxis).

THANK YOU

