

International Center for Numerical Methods in Engineering

Drinking water treatment with ceramic filters in Africa

Judith Krischler, Arjun Ajay, Maria Schulte

africaexpedition.de

Why is that topic so important?

- 1.8 million people per year die because of diarrhea
 - 88% due to unclean water and poor hygiene
 - 344 million people in Africa did not have access to improved drinking water sources in 2010
- WHO: avoidability of 94% of deaths with the help of improved safe water supply and sanitation
- Solution: "point-of-use"- water treatment

→ e.g. ceramic filters

http://www.believeinzero.at

http://www.water-for-africa.org

Manufacture of ceramic filters

- 1. Selection of materials:
 - clay, water, combustile materials (and possibly fire-resistant stones)
- 2. Mixing of materials:
 - Homogenous, not too moist mass
- 3. Forming the filter:
 - Disc filter
 - Pot filter
 - Candle filter
- 4. Drying and subsequent firing:
 - Burning temperature: 900-1000°C
 (possibly new stones for oven necessary)

Advantages and disadvantages of ceramic filters

Advantages:

- Economical and cheap in manufacturing and producing
- Materials are readily available (sand, clay, sawdust, rice husks...)
- In most countries ceramic trade is established
- Necessary know-how for the production is available
- High cleaning performance (with regard to microbial contamination and turbidity)

Disadvantages:

- Partially slow flow rates (Ø 1 3 l/h)
- Very fragile
- Service life and reliability are user-dependent
 - → difficult to ensure the durability
- In poor countries there is often no high production rate

- WHO Guideline: E. coli should not be in drinking water
 - *E. coli*: Indicator for fecal polluted water
- Two studies in Cambodia:

blogs.britannica.com

Table 1: Cleaning performance of ceramic filters compared to biosand filters

	Cleaning performance (%)		
	Ceramic filters	Biosand filters	
Removal rate <i>E. coli</i>	98 (up to 99,99)	95	
Reduction of diarrhea	46	47	
Reduction of water turbidity	70	82	

- WHO guidelines for risk groups
 - Assessment of sanitary situations due to infection risks
 - E. coli as the indicator bacteria
 - Likelihood of keeping the guideline at least is higher for ceramic filters compared to biosand filter

africaexpedition.de

Table 2: Exceedance propability of the WHO guidelines

WHO risk groups by <i>E. coli</i> in	Exceedance propability (%)		
drinking water	Ceramic filters	Biosand filters	
Low risk: >0CFU*/100ml	30-40	56-67	
Average risk: >10CFU*/100ml	15	37	
High risk: >100CFU*/100ml	6	14	

^{*}CFU = colony-forming unit

- WHO: required reduction values for pathogens (dependent on DALY*)
- Summary of average reduction values of sand and ceramic filters by the WHO

Table 3: required and average reduction values of household water treatment in LRV** (log₁₀ reduction value)

	Required LRV		Average LRV	
Patogens	Protective (≤10 ⁻⁴ DALY per person per year)	Highly Protective (≤10 ⁻⁶ DALY per person per year)	Ceramic filters	Slow sand filters
Bacteria	≥2	≥4		
Viruses	≥3	≥5		
Protozoa	≥2	≥4		

^{*}DALY: Disability-adjusted life-years, measure for the health of a population or the burden of disease

^{**}LRV = Log_{10} (Pathogenic concentration before treatment) - Log_{10} (Pathogenic concentration after treatment) LRV = 1 = 10^1 = 90%, LRV = 2 = 10^2 = 99%, LRV = 3 = 10^3 = 99,9% reduced pathogens.

- ceramic filters have better reduction performance of all pathogens
- ceramic filters more likely attain the "Highly Protective" reduction values

Table 3: required and average reduction values of household water treatment in LRV** (log₁₀ reduction value)

	Required LRV		Average LRV	
Patogens	Protective (≤10 ⁻⁴ DALY per person per year)	Highly Protective (≤10 ⁻⁶ DALY per person per year)	Ceramic filters	Slow sand filters
Bacteria	≥2	≥4	2-6	1-3
Viruses	≥3	≥5	1-4	0,5-2
Protozoa	≥2	≥4	4-6	2-4

^{*}DALY: Disability-adjusted life-years, measure for the health of a population or the burden of disease

^{**}LRV = Log_{10} (Pathogenic concentration before treatment) - Log_{10} (Pathogenic concentration after treatment) LRV = 1 = 10^1 = 90%, LRV = 2 = 10^2 = 99%, LRV = 3 = 10^3 = 99,9% reduced pathogens.

Ensuring drinking water demand

- WHO statement: 20 liters of water per day and person for a minimum of health and hygiene
- Ceramic filters: flow rate 1-3 l/h
 - → 10 hours for 20 liters
 - Sand filters flow rate 15-60 l/h
 - Flow rate depending on filter thickness, the used material and the thereof accompanying pore size of the filter

charitywater.org

- Connection between change in performance and service life not known
 - → General: 4 years of use period, in which filter cleans smoothly
 - Filter cleaning by user is obligatory (due to particulate material)

Summary

 Africa: more than 30% of the population don't have access to improved drinking water → death by diarrhea is often the case

Potential solution: water cleaning at the point of use

→ Ceramic filters

- Production possible on-site, cost-effective
- High cleaning performance
- WHO guidelines are more likely kept than with sand filters
- **Problem**: slow provision of purified water, cleaning required by users

But: Many lives could be saved by this simple gadget.

The end

Thank you for your attention!

globalnaturalresources.wordpress.com