Consider the following differential equation

$$-u'' = f in]0,1[$$

with the boundary conditions u(0)=0, $u(1)=\alpha$.

The Finite Element discretization is a 2-noded linear mesh given by the nodes $x_i = ih$ for i = 0,1,...,n and h = 1/n.

- 1. Find the weak form of the problem. Describe the FE approximation u^h .
- 2. Describe the linear system of equations to be solved.
- 3. Compute the FE approximation u^h for n=3, $f(x)=\sin x$, and $\alpha=3$. Compare it with the exact solution $u(x)=\sin x+(3-\sin 1)x$.

Solution

1. Differential equation governing the problem:

$$A(u) = \frac{d^2u}{x^2} + f(x) = 0 \text{ in } \Omega =]0,1[$$

Boundary condition equations: $B(u): \begin{cases} u(0) = 0 \\ u(1) = 0 \end{cases}$ on Γ_u

For 1D equation takes the form for arbitrary function W(x)

$$\int_0^1 f(x)W(x)dx = -\int_0^1 u''(x)W(x)dx,$$

Integrating by parts $-\int_0^1 u^{''}(x)W(x)dx = -u^{'}(x)W(x)|_0^1 + \int_0^1 u^{'}(x)W^{'}(x)dx =$

$$\int_0^1 u'(x)W'(x)dx - [u'(x)W(x)]_1 + [u'(x)W(x)]_0$$

Receive weak form $\int_0^1 f(x)W(x)dx = \int_0^1 u^{'}(x)W^{'}(x)dx + [qW(x)]_1 - [qW(x)]_0$ where $q = -ku^{'}(x) = -u^{'}(x)$ as in our case k = 1. Here q is the heat flux.

Approximating numerical solution with a linear combination of function:

$$u \cong u^h = \sum_{i=1}^n N_i(x)u_i$$

Substitute the approximation function into the weak form:

$$\int_{0}^{1} \frac{du^{h}}{dx} \frac{dW_{i}}{dx} dx = \int_{0}^{1} fW_{i}(x) dx - [qW(x)]_{1} + [qW(x)]_{0}$$

$$\int_{0}^{1} \frac{d\sum_{j=1}^{n} N_{j}(x)u_{j}}{dx} \frac{dW_{i}}{dx} dx = \int_{0}^{1} fW_{i}(x)dx - [qW_{i}(x)]_{1} + [qW_{i}(x)]_{0}$$

Using Galerkin method, choose the weighted function $W_i(x) \equiv N_i(x)$.

In this case the weak form takes the view:

$$\int_{0}^{1} \frac{d\sum_{j=1}^{n} N_{j}(x)u_{j}}{dx} \frac{dN_{i}}{dx} dx = \int_{0}^{1} fN_{i}(x)dx - [qN_{i}(x)]_{1} + [qN_{i}(x)]_{0}$$

2. From the last weak form we can obtain global system of equations:

$$\sum_{j=1}^{n} \left(u_{j} \int_{0}^{1} \frac{dN_{i}}{dx} \frac{dN_{j}}{dx} dx \right) = \int_{0}^{1} fN_{i}(x) dx - [qN_{i}(x)]_{1} + [qN_{i}(x)]_{0}$$

The components u_j could be found by solving the system of n equations $\mathbf{K}\mathbf{u} = \mathbf{f}$, where \mathbf{K} is such matrix as $K_{ij} = \int_0^1 \frac{dN_i}{dx} \frac{dN_j}{dx} dx$, and \mathbf{f} is such vector that $f_i = \int_0^1 f N_i(x) dx - [qN_i(x)]_1 + [qN_i(x)]_0$.

Discretization of the domain for a mesh of two-noded elements:

$$\begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & \cdots & & & & \\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & \cdots & & & & \\ & \vdots & & \ddots & & \vdots & & \\ & 0 & & \cdots & K_{22}^{(n-1)} + K_{11}^{(n)} & K_{12}^{(n)} \\ & & & & & & & & \\ & & & & & & & \\ \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} f_1^{(1)} + q_0 \\ f_2^{(1)} + f_1^{(2)} \\ \vdots \\ f_2^{(n-1)} + f_1^{(n)} \\ f_2^{(n)} - q_1 \end{bmatrix}$$

Where K - the global stiffness matrix such as

$$K_{ij}^{(e)} = \int_{I^{(e)}} \frac{dN_i^{(e)}}{dx} \frac{dN_j^{(e)}}{dx} dx = (-1)^{i+j} \left(\frac{1}{l}\right)^{(e)}$$

And components of the global equivalent nodal flux vector f:

$$f_i^{(e)} = \int_{I^{(e)}} f N_i^{(e)}(x) dx$$

 $N_i^{(e)}$ is defined as

$$N_1^{(e)}(x) = \frac{x_2^{(e)} - x}{l^{(e)}}, N_2^{(e)}(x) = \frac{x - x_1^{(e)}}{l^{(e)}}$$
$$N_i^{(e)}(x) = \begin{cases} N_i^{(e)}(x_i) = 1\\ N_i^{(e)}(x_j) = 0 \end{cases}$$

3. Computing the FE approximation u^h for n=3, $f(x)=\sin x$, and $\alpha=3$ As $n=3 \Rightarrow h=\frac{1}{n}=1/3$. Then as $x_i=ih$, $x_0=0*\frac{1}{3}=0$, $x_1=1*\frac{1}{3}=1/3$, $x_2=2*\frac{1}{3}=2/3$, $x_3=3*\frac{1}{3}=1$.

$$l^{(1)} = l^{(2)} = l^{(3)} = 1/3$$

System of equations:

$$\begin{bmatrix} K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0 \\ K_{21}^{(1)} & K_{22}^{(1)} + K_{11}^{(2)} & K_{12}^{(2)} & 0 \\ 0 & K_{21}^{(2)} & K_{22}^{(2)} + K_{11}^{(3)} & K_{12}^{(3)} \\ 0 & 0 & K_{12}^{(3)} & K_{22}^{(3)} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} f_1^{(1)} + q_0 \\ f_2^{(1)} + f_1^{(2)} \\ f_2^{(2)} + f_1^{(3)} \\ f_2^{(3)} + q_l \end{bmatrix}$$

$$K_{11}^{(1)} = K_{11}^{(2)} = K_{11}^{(3)} = K_{22}^{(1)} = K_{22}^{(2)} = K_{22}^{(3)} = (-1)^{i+j} \left(\frac{1}{l}\right)^{(e)} = \frac{1}{\frac{1}{3}} = 3$$

$$K_{12}^{(1)} = K_{12}^{(2)} = K_{12}^{(3)} = K_{21}^{(1)} = K_{21}^{(2)} = K_{21}^{(3)} = (-1)^{i+j} \left(\frac{1}{l}\right)^{(e)} = -\frac{1}{\frac{1}{3}} = -3$$

$$f_{1}^{(1)} = \int_{0}^{1/3} N_{1}^{(1)}(x) \sin x \, dx = \int_{0}^{1/3} \frac{x_{2}^{(1)} - x}{l^{(1)}} \sin x \, dx = \int_{0}^{1/3} \frac{1/3 - x}{1/3} \sin x \, dx = \int_{0}^{1/3} \sin x \, dx$$

$$- 3 \int_{0}^{1/3} x \sin x \, dx = -\cos x \, |_{0}^{1/3} - 3(-x \cos x + \sin x)|_{0}^{\frac{1}{3}}$$

$$= -\cos \frac{1}{3} + 1 + \cos \frac{1}{3} - 3 \sin \frac{1}{3} = 1 - 3 \sin \frac{1}{3} = 0.0184$$

$$f_{1}^{(2)} = \int_{1/3}^{2/3} N_{1}^{(2)}(x) \sin x \, dx = \int_{1/3}^{2/3} \frac{x_{2}^{(2)} - x}{l^{(2)}} \sin x \, dx = \int_{1/3}^{2/3} \frac{2/3 - x}{1/3} \sin x \, dx$$

$$= 2 \int_{1/3}^{2/3} \sin x \, dx - 3 \int_{1/3}^{2/3} x \sin x \, dx$$

$$= -2 \cos x \, |_{1/3}^{2/3} - 3(-x \cos x + \sin x)|_{1/3}^{2/3} = \cos \frac{1}{3} + 3 \left(\sin \frac{1}{3} - \sin \frac{2}{3}\right)$$

$$= 0.0714$$

$$f_1^{(3)} = \int_{2/3}^{1} N_1^{(3)}(x) \sin x \, dx = \int_{2/3}^{1} \frac{x_2^{(3)} - x}{l^{(3)}} \sin x \, dx = \int_{2/3}^{1} \frac{1 - x}{1/3} \sin x \, dx$$

$$= 3 \int_{2/3}^{1} \sin x \, dx - 3 \int_{2/3}^{1} x \sin x \, dx = -3 \cos x \, |\frac{1}{2/3} - 3(-x \cos x + \sin x)| \, |\frac{1}{2/3} - 3(-x \cos x +$$

Because of boundary conditions $u_1=0$, $u_4=lpha=3$. The system of equations takes the view:

$$\begin{bmatrix} 3 & -3 & 0 & 0 \\ -3 & 6 & -3 & 0 \\ 0 & -3 & 6 & -3 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ u_2 \\ u_3 \\ 3 \end{bmatrix} = \begin{bmatrix} 0.0184 + q_0 \\ 0.1080 \\ 0.2042 \\ 0.1290 + q_l \end{bmatrix}$$

Solving the system $\begin{bmatrix} 6 & -3 \\ -3 & 6 \end{bmatrix} \begin{bmatrix} u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 0.1080 \\ 9.2042 \end{bmatrix}$, receive $u_2 = 1.0467$, $u_3 = 2.0573$.

Now we can calculate the flux on the boundaries:

$$\begin{bmatrix} 3 & -3 & 0 & 0 \\ -3 & 6 & -3 & 0 \\ 0 & -3 & 6 & -3 \\ 0 & 0 & -3 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1.0467 \\ 2.0573 \\ 3 \end{bmatrix} = \begin{bmatrix} 0.0184 + q_0 \\ 0.1080 \\ 0.2042 \\ 0.1290 + q_t \end{bmatrix}$$

$$-3 * 1.0467 = 0.0184 + q_0 \Rightarrow q_0 = -3.1585$$

 $2.0573 * 3 + 3 * 3 = 0.1290 + q_l \Rightarrow q_l = -2.6991$

The fluxes are negative because their directions are opposite to that we assumed.

Let us compare FEM solution u with the exact solution $u^*(x) = \sin x + (3 - \sin 1)x$.

	$u^*(x) = \sin x + (3 - \sin 1)x$	u(x)
0	0	0
1/3	1.0467	1.0467
2/3	2.0574	2.0573
1	3	3

As we can see from the table and the graph, the approximate solution is equal to the exact solution. Two displacements u_2 and u_3 obtain the difference between the exact solution and the FEM is 0 and 0.0001 respectively. The approximations converge with a minimum error of 0.01% in the case of u_3 and 0% in u_2 . The exact solution can be approximated by a linear function (FE 2 node mesh with three elements).