Margarita Smolentseva
Consider the following differential equation
—u =fin]0,1[
with the boundary conditions u(0)=0, u(1)=a.

The Finite Element discretization is a 2-noded linear mesh given by the nodes x; = ih for
i=01,..,nand h = 1/n.

1. Find the weak form of the problem. Describe the FE approximation u".

Describe the linear system of equations to be solved.
3. Compute the FE approximation u” forn = 3,f(x) = sinx,and a = 3. Compare it with
the exact solution u(x) = sinx + (3 — sin1)x.

Solution

1. Differential equation governing the problem:
2

Alu) = Ci—zu+ f(x)=0inn =]0,1]

u(0) =0
u(1) =0
For 1D equation takes the form for arbitrary function W(x)

fy FEOWEdx = = [{u" W (@)dx,
Integrating by parts — fol u (OW)dx = —u (OW(x)|b + fol u OW (x)dx =
fo o @)W @dx — [ W@ + [ W]
Receive weak form folf(x)W(x)dx = fol u OW' (x)dx + [qW(x)]; — [qW (x)], where

q = —ku (x) = —u (x) as in our case k = 1. Here q is the heat flux.

Boundary condition equations: B(u): { onT,

Approximating numerical solution with a linear combination of function:

n
u= uh = ZNi(x)ul-
i=1

Substitute the approximation function into the weak form:
1 1
du™ dw;

Ed_xldx = ffWi(x)dx— [qW (x)]; + [qW (x)]o
0 0

1 1
d Y- N; ()w; dw;
[ PR S = [ pwiGodx - [aWCoL + W@y
dx dx
0 0
Using Galerkin method, choose the weighted function W;(x) = N;(x).

In this case the weak form takes the view:

1
f dXj-1 N (x)y dN;
dx dx

1
dx = f FNGOdx — [qN, GOl + [aN,(0)]o
0 0



2. From the last weak form we can obtain global system of equations:

0de

n 1
LdN; dN;
Z (uj - dx) = iji(x)dx — [qN;(x)]; + [gN;(x)]o
j=1 0

The components u; could be found by solving the system of n equations Ku = f, where K is
dN;
such matrix as K;; = LN 2N dx, and f is such vector that f; = fol fN;(x)dx — [gN;(x)]; +

0 dx dx
[qN; (x)]o-

Discretization of the domain for a mesh of two-noded elements:
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Where K — the global stiffness matrix such as

dN.© dn,© o1
(e) _ i 'j _ +
k= [ o —111(-)
ij (f) b ax = DT
le

And components of the global equivalent nodal flux vector f:

(e)

= f FN (x)dx

1(e)

N;©® is defined as
(e) _ (e

X X

(e) — '
N (x) {Ni(e)(xj) ~0

3. Computing the FE approximation u” forn = 3,f(x) =sinx,and a =3

Asn=3 =>h===1/3.Thenasx; = ih,xp = 043 = 0,0 = 147 =1/3,0, = 2% =

2/3,x3=3%7=1
D=1 =16 =1/3
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System of equations:

[k K 0 0]y [AV+a0]
K KPR kDo el |0
0 Ky KR HKD KM A0+ A
0 0 k@ k@ P+ g,

()
M) _ @ _ 3 _ ) _ @) _ ) _
Kll - K Kll KZZ KZZ - K ( 1)l+] (l)

= I =
3
D _ @ _ @ _ oD _ @ _ G _ ne 1
K" = Kiy' =Kj3' =Ky’ = Kpp' =K1 = (=)' (l) =771~ -3
3
1/3 3 4 1/3 1/3
f(l) = N(l)(x) sinx dx = usinx dx = 1/3—_xsinx dx = | sinx dx
1 1 1) 1/3
0 0 0 0
1/3 1
— 3] xsinx dx = —cosx I(l,/3 — 3(—xcosx + sinx) Ig
0
= 1+1+ 1 3'1—1 3'1—00184-
= —cosg cos sin = sing = 0.
2/3 213 o) 2/3
f(z) = N(z)(x) sinx dx = usinx dx = 2/3—_xsinx dx
1 1 0] 1/3
1/3 1/3 1/3
2/3 2/3
=2 f sinx dx - 3 f xsinx dx
1/3 1/3
1 2
_ 2/3 . 2/3_ : .
= —2cosx lj;3 — 3(=xcosx +sinx) Iy ;= cosz + 3 (51n§— sm§)

= 0.0714



1 1
GO

1
3) _ @)y i _ [* . 3
fi = le (x)sinx dx = fl(—3)51nx dx = f
2/3 2/3 2/3
1

1/3 sinx ax

1
=3 .fsinx dx - 3 fxsinx dx = —3cosx I%/3— 3(—xcosx + sinx) Iﬁ/3
/3

2/3 2
2 2
= cos§+ 3 (sing— sin 1) = 0.1166
1/3 1/3 " 1/3
O = [ NO(x)sinx dx = XX o dy = x—0 g
fr = 2 (Osinx dx= | —gFy—sinx dx = 173 sinx dx
0 0 0
1/3
. . 3 1 1
= 3| xsinx dx = 3(—xcosx +sinx) |j= —cos§+ 351n§= 0.0366
0
2/3 2/3 @ 2/3
@ _ N () sinx dx = X=X iy dy = x—1/3 J
L= ,(x)sinx dx = —@ Sinx dx = 173 sinx dx
1/3 1/3 1/3
2/3 2/3
=3 f xsinx dx - j sinx dx = 3(—xcosx + sinx) |f§§+ cos x Ifg
1/3 1/3
= 2+ 3 si 2 3 si 1 = 0.0876
= —cos sinz sing = 0.
1 1 1
3)
xX—Xx x—2/3
fz(g) = sz(g)(x) sinx dx = fl(—@lsinx dx = f 1/3/ sinx dx
2/3 2/3 2/3

1 1
=3 fxsinx dx - 2 .fsinx dx = 3(—xcosx + sinx) I%/3+2cosx I%/3
/3

2 2/3
2
= —cosl+ 3 (sin 1-— sin§> = 0.1290

Because of boundary conditions u; = 0,u, = @ = 3. The system of equations takes the view:

3 -3 0 o1f1o 0.0184 + qq
-3 6 -3 0 [|u]_ 0.1080
0 -3 6 =3||lus| 0.2042
0 0 -3 3113 0.1290 + g,
Solving the system [_63 _63] [Z;] = 8;822, receive u, = 1.0467,u; = 2.0573.

Now we can calculate the flux on the boundaries:

3 -3 0 0 0 0.0184 + g,
-3 6 -3 0]||10467] | 0.1080
0 -3 6 -3[[20573] 7 | 02042
0 0 -3 3 3 0.1290 + g,

—3%1.0467 = 0.0184+ qy = gy = —3.1585
2.0573%3+3%3= 0.1290+¢q, = q, = —2.6991



The fluxes are negative because their directions are opposite to that we assumed.

Let us compare FEM solution u with the exact solution u*(x) = sinx + (3 — sin 1)x.

u*(x) =sinx + (3 —sin1)x u(x)
0 0 0
1/3 1.0467 1.0467
2/3 2.0574 2.0573
1 3 3

3,5

2,5

== U* (x)=sinx+(3-sinl )x

1,5

0,5
O/I T T T T 1

As we can see from the table and the graph, the approximate solution is equal to the exact

== u(x)

solution. Two displacements u, and u; obtain the difference between the exact solution and
the FEM is 0 and 0.0001 respectively. The approximations converge with a minimum error of
0.01% in the case of u3 and 0% in u, . The exact solution can be approximated by a linear
function (FE 2 node mesh with three elements).




