homework1-FEM

Mohsen Abedin Nejad

November 2015

Problem

consider the following differential equation

$$
\left.-u^{\prime \prime}=f i n\right] 0,1[
$$

with the boundary conditions $u(0)=0$ and $u(1)=\alpha$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.
2. Describe the linear systems of equations to be solved.
3. Compute the FE approximation u^{h} for $n=3, f(x)=\sin x$ and $\alpha=3$ and $\alpha=3$. Compare it with the exact solution, $u(x)=\sin x+(3-\sin 1) x$.

Solution

To find the weak form of the problem we should multiple the equation by an arbitrary test function and integrate it. So,

$$
-\int_{0}^{1} W(x) u^{\prime \prime}(x) d x=\int_{0}^{1} W(x) f(x) d x
$$

By integration by part, we have

$$
\begin{equation*}
\int_{0}^{1} W^{\prime}(x) u^{\prime}(x) d x=\int_{0}^{1} W(x) f(x) d x+\left.W(x) u^{\prime}(x)\right|_{0} ^{1} \tag{1}
\end{equation*}
$$

Equation (1) is the weak form of our differential equation. To describe the FE approximation of u^{h} we assume that $u \approx u^{h}=\sum_{j=1}^{n} u_{j} N_{j}(x)$, where we choose N_{j} 's as linear functions which have compact support. u_{j} 's are our nodes and are the value of function u in some points of the domain and are unknown except u_{1} and u_{n} by boundary conditions. by assumption that $u^{\prime}(1)=B$ and $u^{\prime}(0)=A$, we can write (1) as follow:

$$
\begin{equation*}
\int_{0}^{1} W^{\prime}(x) \sum_{j=1}^{n} u_{j} \frac{d N_{j}}{d x} d x=\int_{0}^{1} W(x) f(x) d x+W(1) B-W(0) A \tag{2}
\end{equation*}
$$

The equation (2) is one equation with n unknowns. since W is an arbitrary function, we can choose different W 's to form n equations. In finite element method we use Galerkin Method where $W_{i}(x)=N_{i}(x)$ for $i=1,2, \ldots, n$. so we write (2), as follow:

$$
\begin{equation*}
\int_{0}^{1} \frac{d N_{i}}{d x} \sum_{j=1}^{n} u_{j} \frac{d N_{j}}{d x} d x=\int_{0}^{1} N_{i}(x) f(x) d x+N_{i}(1) B-N_{i}(0) A \tag{3}
\end{equation*}
$$

for $\mathrm{i}=1,2, \ldots, \mathrm{n}$. So the matrix form of (3) is,

$$
\left[\begin{array}{cccc}
K_{11} & K_{12} & \ldots & K_{1 n} \tag{4}\\
K_{21} & K_{22} & \ldots & K_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
K_{n 1} & K_{n 2} & \ldots & K_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right]
$$

where,

$$
\begin{aligned}
& K_{i j}=\int_{0}^{1} \frac{d N_{i}}{d x} \frac{d N_{j}}{d x} d x \\
& f_{i}=\int_{0}^{1} N_{i}(x) f(x) d x+N_{i}(1) B-N_{i}(0) A
\end{aligned}
$$

The equations (3) and (4) are the global form, but to compute we need the local form.

As we have n nodes, there are $n-1$ elements (the distance between two continuous nodes) which their length are $1 /(n-1)$. since each N_{j} is equal to 0 in each element except in j 'th and $j-1$ 'th elements, and also that in these two elements, N_{j} 's are equal to one of N_{1} or N_{2}, therefore we can write (3) as following:
for $i=1$

$$
\int_{0}^{1 /(n-1)} \frac{d N_{1}^{(1)}}{d x}\left(u_{1} \frac{d N_{1}^{(1)}}{d x}+u_{2} \frac{d N_{2}^{(1)}}{d x}\right) d x=\int_{0}^{1 /(n-1)} N_{1}^{(1)} f d x-A
$$

for $i=2$

$$
\begin{aligned}
& \int_{0}^{1 /(n-1)} \frac{d N_{2}^{(1)}}{d x}\left(u_{1} \frac{d N_{1}^{(1)}}{d x}+u_{2} \frac{d N_{2}^{(1)}}{d x}\right) d x \\
+ & \int_{1 /(n-1)}^{2 /(n-1)} \frac{d N_{1}^{(2)}}{d x}\left(u_{2} \frac{d N_{1}^{(2)}}{d x}+u_{3} \frac{d N_{2}^{(2)}}{d x}\right) d x \\
= & \int_{0}^{1 /(n-1)} N_{2}^{(1)} f d x+\int_{1 /(n-1)}^{2 /(n-1)} N_{1}^{(2)} f d x
\end{aligned}
$$

and finally for $i=n$

$$
\begin{aligned}
& \int_{(n-2) /(n-1)}^{1} \frac{d N_{2}^{(n-1)}}{d x}\left(u_{n-1} \frac{d N_{1}^{(n-1)}}{d x}+u_{n} \frac{d N_{2}^{(n-1)}}{d x}\right) d x \\
= & \int_{(n-2) /(n-1)}^{1} N_{2}^{(n-1)} f d x+B
\end{aligned}
$$

and we can write the matrix equation (4) as following:

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
K_{11}^{(1)} & K_{12}^{(1)} & 0 & 0 & \cdots \\
K_{21}^{(1)} & K_{22}^{(1)}+K_{11}^{(2)} & K_{12}^{(2)} & 0 & \cdots \\
0 & K_{21}^{(2)} & K_{22}^{(2)}+K_{11}^{(3)} & K_{12}^{(3)} & \cdots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & K_{21}^{(n-2)} & K_{22}^{(n-2)}+K_{11}^{(n-1)} \\
0 & \cdots & 0 & K_{21}^{(n-1)} & K_{12}^{(n-1)} \\
0 & 0 & & K_{22}^{(n-1)}
\end{array}\right]} \\
& \times\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1}^{(1)}-A \\
f_{2}^{(1)}+f_{1}^{(2)} \\
f_{2}^{(2)}+f_{1}^{(3)} \\
f_{2}^{(n-2)}+f_{1}^{(n-1)} \\
f_{2}^{(n-1)}+B
\end{array}\right]
\end{aligned}
$$

In this matrix equation, coefficient matrix K is known, and by boundary conditions the values of $u_{1}=0$ and $u_{n}=\alpha . f_{1}^{(e)}$ and $f_{2}^{(e)}$ are also known. So we have n unknowns which are $u_{2}, \ldots, u_{n-1}, A, B$ and n equations.

To solve our problem with 4 nodes in the domain, first we need to get $N_{1}^{(e)}$ and $N_{2}^{(e)}$,

$$
N_{1}^{(e)}=\frac{x_{2}^{(e)}-x}{l^{(e)}}, \quad N_{2}^{(e)}=\frac{x-x_{1}^{(e)}}{l^{(e)}}
$$

where $l^{(e)}$ is the length of each element. so we have,

$$
\begin{array}{ll}
N_{1}^{(1)}=3\left(\frac{1}{3}-x\right), & N_{2}^{(1)}=3 x \\
N_{1}^{(2)}=3\left(\frac{2}{3}-x\right), & N_{2}^{(2)}=3\left(x-\frac{1}{3}\right) \\
N_{1}^{(3)}=3(1-x), & N_{2}^{(3)}=3\left(x-\frac{2}{3}\right)
\end{array}
$$

so we can compute coefficient matrix as following:

$$
\begin{aligned}
& K_{11}^{(1)}=\int_{0}^{1 / 3} 9 d x=3, \quad K_{12}^{(1)}=\int_{0}^{1 / 3}-9 d x=-3 \\
& K_{21}^{(1)}=\int_{0}^{1 / 3}-9 d x=-3, \quad K_{22}^{(1)}=\int_{0}^{1 / 3} 9 d x=3 \\
& K_{11}^{(2)}=\int_{1 / 3}^{2 / 3} 9 d x=3, \quad K_{12}^{(2)}=\int_{1 / 3}^{2 / 3}-9 d x=-3 \\
& K_{21}^{(2)}=\int_{1 / 3}^{2 / 3}-9 d x=-3, \quad K_{22}^{(2)}=\int_{1 / 3}^{2 / 3} 9 d x=3 \\
& K_{11}^{(3)}=\int_{2 / 3}^{1} 9 d x=3, \quad K_{12}^{(3)}=\int_{2 / 3}^{1}-9 d x=-3 \\
& K_{21}^{(3)}=\int_{2 / 3}^{1}-9 d x=-3, \quad K_{22}^{(3)}=\int_{2 / 3}^{1} 9 d x=3
\end{aligned}
$$

then,

$$
\begin{aligned}
f_{1}^{(1)}= & \int_{0}^{1 / 3} 3\left(\frac{1}{3}-x\right) \sin x d x=-\left.\cos x\right|_{0} ^{1 / 3}+\left.3 x \cos x\right|_{0} ^{1 / 3}-\left.3 \sin x\right|_{0} ^{1 / 3} \\
= & 1-3 \sin \frac{1}{3} \simeq 0.0184 \\
& f_{2}^{(1)}=\int_{0}^{1 / 3} 3 x \sin x d x=-\left.3 x \cos x\right|_{0} ^{1 / 3}+\left.3 \sin x\right|_{0} ^{1 / 3} \\
& =-\cos \frac{1}{3}+3 \sin \frac{1}{3} \simeq 0.0366 \\
f_{1}^{(2)}= & \int_{1 / 3}^{2 / 3} 3\left(\frac{2}{3}-x\right) \sin x d x=-\left.2 \cos x\right|_{1 / 3} ^{2 / 3}+\left.3 x \cos x\right|_{1 / 3} ^{2 / 3}-\left.3 \sin x\right|_{1 / 3} ^{2 / 3} \\
= & \cos \frac{1}{3}-3 \sin \frac{2}{3}+3 \sin \frac{1}{3} \simeq 0.0714 \\
f_{2}^{(2)}= & \int_{1 / 3}^{2 / 3} 3\left(x-\frac{1}{3}\right) \sin x d x=-\left.3 x \cos x\right|_{1 / 3} ^{2 / 3}+\left.3 \sin x\right|_{1 / 3} ^{2 / 3}+\left.\cos x\right|_{1 / 3} ^{2 / 3} \\
= & -\cos \frac{2}{3}+3 \sin \frac{2}{3}-3 \sin \frac{1}{3} \simeq 0.0876 \\
f_{1}^{(3)}= & \int_{2 / 3}^{1} 3(1-x) \sin x d x=-\left.3 \cos x\right|_{2 / 3} ^{1}+\left.3 x \cos x\right|_{2 / 3} ^{1}-\left.3 \sin x\right|_{2 / 3} ^{1} \\
= & \cos \frac{2}{3}-3 \sin 1+3 \sin \frac{2}{3} \simeq 0.1166
\end{aligned}
$$

$$
\begin{aligned}
f_{2}^{(3)} & =\int_{2 / 3}^{1} 3\left(x-\frac{2}{3}\right) \sin x d x=-\left.3 x \cos x\right|_{2 / 3} ^{1}+\left.3 \sin x\right|_{2 / 3} ^{1}+\left.2 \cos x\right|_{2 / 3} ^{1} \\
& =-\cos 1+3 \sin 1-3 \sin \frac{2}{3} \simeq 0.1290
\end{aligned}
$$

by assuming that $\alpha=3$, the linear systems to be solved are:

$$
\left[\begin{array}{cccc}
3 & -3 & 0 & 0 \tag{5}\\
-3 & 6 & -3 & 0 \\
0 & -3 & 6 & -3 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{c}
0 \\
u_{2} \\
u_{3} \\
3
\end{array}\right]=\left[\begin{array}{c}
0.0184-A \\
0.1080 \\
0.2042 \\
0.1290+B
\end{array}\right]
$$

So by (5), we have,

$$
\begin{aligned}
& 6 u_{2}-3 u_{3}=0.1080, \quad-3 u_{2}+6 u_{3}-9=0.2042 \\
& \Longrightarrow u_{2}=1.0467, \quad u_{3}=2.0574
\end{aligned}
$$

and $B=2.6988, A=3.1585$. Therefore, we have

$$
\begin{aligned}
u^{h} & =\sum_{j=1}^{4} u_{j} N_{j}(x)=u_{1} N_{1}(x)+u_{2} N_{2}(x)+u_{3} N_{3}(x) u_{4} N_{4}(x) \\
& =\left\{\begin{aligned}
u_{1} N_{1}^{(1)}+u_{2} N_{2}^{(1)} & \text { If } u_{1} \leq x<u_{2} \\
u_{2} N_{1}^{(2)}+u_{3} N_{2}^{(2)} & \text { If } u_{2} \leq x<u_{3} \\
u_{3} N_{1}^{(3)}+u_{4} N_{2}^{(3)} & \text { If } u_{3} \leq x<u_{4}
\end{aligned}\right. \\
& =\left\{\begin{array}{rr}
1.0467(3 x) & \text { If } 0 \leq x<1 / 3 \\
1.0467(2-3 x)+2.0574(3 x-1) & \text { If } 1 / 3 \leq x<2 / 3 \\
2.0574(3-3 x)+3(3 x-2) & \text { If } 2 / 3 \leq x \leq 1
\end{array}\right.
\end{aligned}
$$

The values of u_{2} and u_{3} are axactly the same as the exact solution which is $u(x)=\sin x+(3-\sin 1) x$ and the u^{h} is a good linear approximation of this nonlinear function.

