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A triangular thin plate is deformed under its self-weight and an imposed vertical 

displacement δ on the tip. A plane stress model is used to analyze the structural 

response of the plate. The thickness is assumed to be equal to 1, i.e. t = 1 m. 

Using the symmetry of the problem, only the left half of the domain is analyzed.  

The finite element discretization with a mesh of 4 3-noded linear triangular 

elements and 6 nodes is shown in figure 2. 

1. Describe the strong form of the problem in the reduced domain (let half). 

Indicate accurately the BC in every edge. 

2. Describe the mesh by giving the arrays of the nodal coordinates X and 

the connectivity matrix T.  

3. Set up the linear system of equations corresponding to the discretization. 

How many degrees of freedom have the system to be solved? 

4. Compute the FE approximation uh. 

  



Due to the type of the problem, which can be analyzed following the assumption 

of 2D elasticity plane stress problem, the strong form is: 

∇ · 𝝈 + 𝒃 = 0          𝒙 ∈ 𝜴 

Where, 

𝒃 =  𝜌 · 𝒈 

The Dirichlet boundary conditions are: 

𝑥:  𝑢1 = 𝑢2 = 𝑢3 = 𝑢5 = 𝑢6 = 0 𝑚 

𝑦: {  𝑢6 = 1 · 10−2 𝑚
𝑢1 = 𝑢2 = 𝑢3 = 0 𝑚

 

The strain field can be computed as 

𝜺 =  

[
 
 
 
 𝜀𝑥

1

2
ϒ𝑥𝑦 0

1

2
ϒ𝑥𝑦 𝜀𝑦 0

0 0 𝜀𝑧]
 
 
 
 

 

Where the non-zero components of the strain tensor take the form, 

𝜀𝑥 =
1

𝐸
(𝜎𝑥 − 𝑣𝜎𝑦) 

𝜀𝑦 =
1

𝐸
(𝜎𝑦 − 𝑣𝜎𝑥) 

𝜀𝑧 = −
1

𝐸
𝑣(𝜎𝑥 − 𝜎𝑦) 

ϒ𝑥𝑦 =
1

𝐺
𝜏𝑥𝑦 

And the constitutive equation for plane stress linear elasticity can be written as 

(

𝜎𝑥

𝜎𝑦

𝜏𝑥𝑦

) =
𝐸

1 − 𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
1 − 𝑣

2

] (

𝜀𝑥

𝜀𝑦

ϒ𝑥𝑦

)  

Where E is the Young Modulus and v is the Poisson’s ratio. 

And the relation between strain and displacement is: 

𝜀𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
 



𝜀𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
 

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
) 

  



Table 1 and table 2 and show the nodal coordinates X and the connectivity 

matrix T. 

 

Table 1:Nodal coordinates. 

Node X Y 

1 -3 0 

2 -1.5 0 

3 0 0 

4 -1.5 1.5 
5 0 1.5 

6 0 3 

 

Table 2: Coonectivity matrix. 

Element Nodes 

1 2 4 1 

2 4 2 5 
3 3 5 2 

4 5 6 4 

 

Picture1 shows the domain decomposed in 4 elements   and figure 2 shows the 

local numbering of the nodes for a single element: the node in the right angle 

vertex has local numbering equal to 1 and the numeration follows a 

counterclockwise criteria. 

 

Figure 1 



 

Figure 2 

The first step to obtain the approximate solution is discretizing the domain as a 

mesh of triangular elements. The three nodes have a global numbering of i,j,k 

which corresponds to the local numbering 1,2,3. The approximate solution of 

the displacement in x and y directions can be expressed as: 

 

𝑢 = 𝑁1𝑢1 + 𝑁2𝑢2 + 𝑁3𝑢3 

𝑣 = 𝑁1𝑣1 + 𝑁2𝑣2 + 𝑁3𝑣3 

 

Where Ni are the shape function and (ui,vi) are node displacement in x and y 

directions.  

The equation can be written as:  

 

𝒖 = 𝑵 · 𝒂𝒆 

 

N and a(e) contain as many matrices Ni and vectors a(e) as element nodes. 

The expression of the shape function is found to be as: 

 

𝑁𝑖 =
1

2 · 𝐴𝑒
(𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑦) 

 

Where Ae is the area of the element and 

 

𝑎𝑖 = 𝑥𝑗𝑦𝑘 − 𝑥𝑘𝑦𝑗 

𝑏 = 𝑦𝑙 − 𝑦𝑘 

𝑐 = 𝑥𝑘 − 𝑥𝑗 

 



The shape function takes the value 1 at node i and zero at the other two nodes. 

Strain and stress are obtained as 

 

𝜺 = 𝑩𝒂𝒆 

 

𝝈 = 𝑫𝑩𝒂𝒆 

 

Where B contains as many matrices as element nodes and is obtained as: 

 

𝐵𝑖 =
1

2𝐴𝑒
[

𝑏𝑖 0
0 𝑐𝑖

𝑐𝑖 𝑏𝑖

] 

 

And D is the constitutive matrix.  

In this case, as the problem is a plane stress and the material is isotropic, the 

constitutive matrix is: 

 

𝑫 = [

𝑑11 𝑑12 0
𝑑12 𝑑22 0
0 0 𝑑33

] 

 

For isotropic elasticity plan stress problem we have, 

𝑑11 = 𝑑22 =
𝐸

1 − 𝑣2
 

 

𝑑12 = 𝑑21 = 𝑣𝑑11 

 

𝑑33 =
𝐸

2(1 + 𝑣)
= 𝐺 

 

Where E is the Young Modulus and v is the Poisson’s ratio. 

The discretized equilibrium equations for the 3-nodoed triangle will be derived 

by applying the PVW. In FEM the equilibrium of the forces is apply at the nodes 

only, so a nodal point load will be defined in order to balance the external forces 

and the internal forces due to the element deformation.  

For each individual element, the equilibrating nodal forces are obtained as: 



∬ 𝛿𝜺𝑻𝝈𝑡𝑑𝐴 =  ∬ 𝛿𝒖𝑻𝒃𝑡𝑑𝐴 + ∮ 𝛿𝒖𝑻𝒕𝑡𝑑𝑠 + ∑𝛿𝑢𝑖𝑈𝑖 +

3

𝑖=1𝑙𝑒𝐴𝑒𝐴𝑒

∑𝛿𝑣𝑖𝑉𝑖

3

𝑖=1

 

Where U and V are the equilibrating nodal forces.  

After the interpolation of the virtual displacement in terms of the nodal values, 

substituting in the previous equation and taking into account that the virtual 

displacement is arbitrary, we obtain 

[∬ 𝑩𝑻𝑫𝑩𝑡𝑑𝐴]𝒂𝒆 − ∬ 𝑩𝑻𝑬𝜺𝟎𝑡𝑑𝐴 + ∬ 𝑩𝑻𝝈𝟎𝑡𝑑𝐴 
𝐴𝑒𝐴𝑒𝐴𝑒

 

−∬ 𝑵𝑻𝒃𝑡𝑑𝐴  − ∮ 𝑵𝑻𝒕𝑡𝑑𝑆 = 𝒒𝒆

𝑙𝑒𝐴𝑒

 

 

Where qe is the equilibrating nodal forces in terms of the nodal forces due to the 

element deformation (first three integrals), the body forces (second integral) and 

the surface traction(third integral) and ae is the nodal displacement. 

The global equilibrium equation could be written as  

𝑲𝒂 = 𝒇 

Where K is the element stiffness matrix and it can be written for a 3 nodes 

triangular element as 

 

𝑲𝒊𝒋
𝒆 = (

𝑡

4𝐴
)
𝑒

[
𝑏𝑖𝑏𝑗𝑑11 − 𝑐𝑖𝑐𝑗𝑑33 𝑏𝑖𝑐𝑗𝑑12 + 𝑏𝑗𝑐𝑖𝑑33

𝑐𝑖𝑏𝑗𝑑21 + 𝑏𝑖𝑐𝑗𝑑33 𝑏𝑖𝑏𝑗𝑑33 + 𝑐𝑖𝑐𝑗𝑑22 
] 

 

And the body forces equally distributed for a 3 nodes triangular element can be 

computed as 

 

𝑓𝑏𝑖
𝑒 =

(𝐴𝑡)

3

𝑒

(
𝑏𝑥

𝑏𝑦
) 

 

In order to set up the linear system of equations, first of all, we compute the 

constitutive matrix D  

 



𝑫 = 1 · 109  [
10.417 2.083 0
2.083 10.417 0

0 0 4.167
] 

 

and the element stain matrix B  for the elements 1, 3 and 4  

 

𝑩(𝟏 𝟑 𝟒) = [
−1.5 0 1.5

0 0 0
0 −1.5 −1.5

  
0 0 0

−1.5 0 1.5
1.5 1.5 0

] 

 

And for the element 2 

 

𝑩(𝟐) = [
0 0 1.5
0 −1.5 0

−1.5 0 0
  

0 −1.5 0
0 0 1.5

1.5 1.5 −1.5
] 

 

 

 

 

  



Then we compute the K matrix for each element. Following the element 

numbering, elements 1, 3 and 4, can join the same values, which are different 

from element 2. 

 

𝐾1 3 4 =  

5,21E+09 0 -5,2E+09 1,04E+09 0 -1E+09 

0 2,08E+09 2,08E+09 -2,1E+09 -2,1E+09 0 

-5,2E+09 2,08E+09 7,29E+09 -3,1E+09 -2,1E+09 1,04E+09 

1,04E+09 -2,1E+09 -3,1E+09 7,29E+09 2,08E+09 -5,2E+09 

0 -2,1E+09 -2,1E+09 2,08E+09 2,08E+09 0 

-1E+09 0 1,04E+09 -5,2E+09 0 5,21E+09 

 

 

 

𝐾2 =  

7,29E+09 -3,1E+09 -2,1E+09 1,04E+09 -5,2E+09 2,08E+09 

-3,1E+09 7,29E+09 2,08E+09 -5,2E+09 1,04E+09 -2,1E+09 

-2,1E+09 2,08E+09 2,08E+09 0 0 -2,1E+09 

1,04E+09 -5,2E+09 0 5,21E+09 -1E+09 0 

-5,2E+09 1,04E+09 0 -1E+09 5,21E+09 0 

2,08E+09 -2,1E+09 -2,1E+09 0 0 2,08E+09 

 

Once the each element matrix was obtained, we precede to assembly the 

global stiffness matrix Kglobal. 

In order to fill the global stiffness matrix, the first element stiffness matrix K1_global 

will occupy. 

Due to a symmetricity property of the matrix we have:  

𝐾12 = 𝐾21; 𝐾13 = 𝐾31; 𝐾14 = 𝐾41;  𝐾15 = 𝐾51; 𝐾16 = 𝐾61 

𝐾23 = 𝐾32; 𝐾24 = 𝐾42; 𝐾25 = 𝐾52; 𝐾26 = 𝐾62 

𝐾34 = 𝐾43; 𝐾35 = 𝐾53; 𝐾36 = 𝐾63 

𝐾45 = 𝐾54; 𝐾46 = 𝐾64; 𝐾56 = 𝐾65; 

 

 



K55 K56 K15 K16   K35 K45     

K56 K66 K25 K26   K36 K46     

K15 K16 K11 K12   K13 K14     

K25 K26 K12 K22   K23 K24     

            

            

K35 K45 K13 K14   K33 K34     

K36 K46 K23 K24   K34 K44     

            

            

            

            

 

The second element stiffness matrix K2_global will occupy 

            

            

  K33 K34   K31 K32 K35 K36   

  K34 K44   K41 K42 K45 K46   

            

            

  K31 K32   K11 K12 K15 K16   

  K41 K42   K12 K22 K25 K26   

  K35 K36   K15 K16 K55 K45   

  K45 K46   K25 K26 K45 K66   

            

            

 

The third element stiffness matrix K3_global occupies 

            

            

  K55 K56 K51 K52   KK53 K54   

  K56 K66 K61 K62   K63 K64   

  K51 K52 K11 K12   K13 K14   

  K61 K62 K12 K22   K23 K24   

            

            

  KK53 K54 K13 K14   K33 K34   

  K63 K64 K23 K24   K34 K44   

            

            

 

 

 



And finally the fourth element stiffness matrix K4_global occupies 

            

            

            

            

            

            

      K55 K56 K51 K52 K53 K54 

      K56 K66 K61 K62 K63 K64 

      K51 K52 K11 K12 K13 K14 

      K61 K62 K12 K22 K23 K24 

      K53 K54 K13 K14 K33 K34 

      K63 K64 K23 K24 K34 K44 

 

 

And the global vector body forces will be computed as: 

𝑓𝑔𝑙𝑜𝑏𝑎𝑙 = (0, 𝑓𝑏 , 0, 3𝑓𝑏 , 0, 𝑓𝑏 , 0, 3𝑓𝑏 , 0, 3𝑓𝑏 , 0, 𝑓𝑏)
𝑇 

 

  



 

The global stiffness matrix it will be built as 

𝐾𝑔𝑙𝑜𝑏𝑎𝑙 = ∑𝐾𝑖𝑔𝑙𝑜𝑏𝑎𝑙

4

𝑖=1

 

Where Kglobal is 

 

 

The body forces vector, due to the body is deformed under its self-weight, has 

only a vertical component by [N]. 

  

𝑓𝑏𝑖
𝑒 =

(9/8)

3

 

(
0

−1000
) 

The global vector body force is: 

 

𝑓𝑔𝑙𝑜𝑏𝑎𝑙 = (0, −375, 0, −1125,0, −375, 0, −1125, 0 , −1125,0, −375)𝑇 

 

After applying the boundaries condition and simplify the global system of 

equation, we have the follow system: 

 

1.4583𝑒10 · 𝑢44 − 3.125𝑒9 · 𝑢45 + 3.125𝑒9 · 𝑢55 = −10417𝑒7 

−3.125𝑒9 · 𝑢44 + 1.4583𝑒10 · 𝑢45 − 4.1667𝑒9 · 𝑢55 = −1125 

3.125𝑒9 · 𝑢44 − −4.1667𝑒9 · 𝑢45 + 1.4583𝑒10 · 𝑢55 = −5.208𝑒 

 



So the linear system of equations to solve has three degrees of freedom, which 

are the solution at the node 4 (x and y directions) and at the node 5 (y 

direction).  

 

Results 

The FEM approximation gives us the following results. 

Table 1: Displacement [m] 

Node x 
displacement 

y 
displacement 

1 0 0 

2 0 0 
3 0 0 

4 -1.282e-4 -1.133e-3 
5 0 -3.867e-3 

6 0 -0.1 

 

Table 2: Reaction forces [N] 

Node Rx Ry 

1 1.179e6 2.674e5 

2 9.081e6 1.139e7 
3 -4.028e6 2.014e7 

4 0 0 
5 -5.341e5 0 

6 -5.698e6 -3.180e7 
 

Table 5: Strains 

Element εx εy ϒxy 

1 0 -1.698e-3 -1.923e-4 

2 1.923e-4 -1.698e-3 -4.294e-3 
3 0 -5.801e-3 0 

4 1.923e-4 -9.198e-3 -4.102e-3 
 

Table 4: Stresses [N/m
2
] 

Element σx σy Txy 

1 -3.539e6 -17.696e6 -801.282e3 

2 -1.536e6 -17.296e6 -17.895e6 
3 -12.086e6 -60.431e6 0 

4 -17.160e6 -95.417e6 -17.094e6 

 


