FINITE ELEMENT - HOMEWORK 1

FINITE ELEMENTS

Homework \# 1

Basics of FE
Master in Computational Mechanics
Consider the following differential equation

$$
\left.-u^{\prime \prime}=f \text { in }\right] 0,1[
$$

with the boundary conditions $u(0)=0$ and $u(1)=\alpha$.
The Finite Element discretization is a 2-noded linear mesh given by the nodes $x_{i}=i h$ for $i=0,1, \ldots, n$ and $h=1 / n$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.
2. Describe the linear system of equations to be solved.
3. Compute the FE approximation u^{h} for $n=3, f(x)=\sin x$ and $\alpha=3$. Compare it with the exact solution, $u(x)=\sin x+(3-\sin 1) x$.
1) The weak form of the problem:

We have:

$$
-\frac{d^{2} u}{d x^{2}}=f
$$

Or

$$
\frac{d^{2} u}{d x^{2}}+f=0
$$

In the interval [0,1]

$$
A(u)=\frac{d}{d x}\left(\frac{d u}{d x}\right)+f(x)=0
$$

And the boundary conditions (BC) are:
$B(u)$

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=\alpha
\end{array}\right.
$$

The unknown u is approximated by

$$
\begin{gathered}
u=u^{h}=\sum_{i=1}^{n} N i(x) a i \\
\frac{d u}{d x}=\frac{d N i}{d x}
\end{gathered}
$$

Polynomial approximation of the unknown

$$
\begin{gathered}
u(x) \approx \hat{u}(x)=1+\sum_{j=1}^{n} a_{j} x^{i} \\
u(x)=1+a_{1} x+a_{2} x^{2}
\end{gathered}
$$

Shape functions N1

$$
\left(\begin{array}{ll}
K_{11} & K_{12} \\
K_{21} & K_{22}
\end{array}\right)\left\{\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right\}=\left\{\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right\}
$$

1. The weak form of the problem is:

$$
\int_{0}^{1} w \frac{d^{2} u}{d x^{2}} d x=\int_{0}^{1} w i f d x
$$

And integrating by parts we have:

$$
\begin{gathered}
\int_{0}^{1}\left\{\left[\frac{\partial^{2} u}{\partial x^{2}}\right] \cdot W\right\} d x=\left.W \frac{\partial u}{\partial x}\right|_{0} ^{1}+\int_{0}^{1} \frac{\partial W}{\partial x} \frac{\partial u}{\partial x} d x \\
\int_{0}^{1}\left\{\left[\frac{\partial^{2} u}{\partial x^{2}}\right] \cdot W\right\} d x=\int_{0}^{1} \frac{\partial W}{\partial x} \frac{\partial u}{\partial x} d x \\
\int_{0}^{1} W \cdot f d x=\int_{0}^{1} \frac{\partial W}{\partial x} \frac{\partial u}{\partial x} d x \\
U(x)=\sum_{i=0}^{1} N_{i} \cdot u_{i} \\
W(x)=N_{i}(\mathrm{x})
\end{gathered}
$$

And the weak form of the problem reads:

$$
\int_{0}^{1} \frac{\partial W}{\partial x} \frac{\partial u}{\partial x} d x=\int_{0}^{1} W \cdot f d x+\left.\mathrm{w} \cdot \frac{\partial u}{\partial x}\right|_{0} ^{1}
$$

And the weighted residual formulation

$$
\begin{array}{r}
\int_{0}^{1} \frac{d w i}{d x} \frac{d \widehat{u}}{d x} d x=\int_{0}^{1} w i f d x+w i q-w i \bar{q} \\
\text { in } \mathrm{x}=0 \quad \text { in } \mathrm{x}=1
\end{array}
$$

2.

$\int_{0}^{1} \frac{\partial W_{i}}{\partial x} \sum_{j=0}^{n} \frac{\partial N_{j}}{\partial x} a_{j} d x=\int_{0}^{1} W_{i} \cdot f d x+\left[W_{i} \cdot R\right]_{1}+\left[W_{i} \cdot R\right]_{0}$
$W_{i}=N_{i}$
$\int_{0}^{1} \frac{\partial N_{i}}{\partial x} \sum_{j=0}^{n} \frac{\partial N_{j}}{\partial x} a_{j} d x=\int_{0}^{1} N_{i} \cdot f d x+\left[N_{i} \cdot R\right]_{1}+\left[N_{i} \cdot R\right]_{0}$

So the global equation for this problem is:
$\int_{0}^{1} \frac{\partial W_{i}}{\partial x}\left(\frac{\partial N_{1}}{\partial x} a_{1}+\frac{\partial N_{2}}{\partial x} a_{2}+\frac{\partial N_{3}}{\partial x} a_{3}+\frac{\partial N_{n}}{\partial x} a_{4}\right) d x=\int_{0}^{1} W_{1} \cdot f d x+\left[N_{i} \cdot R\right]_{1}+\left[N_{i} \cdot R\right]_{0}$

For I =1

$$
\int_{0}^{1 / 3} \frac{\partial N_{1}^{(1)}}{\partial x}\left(\frac{\partial N_{1}^{(1)}}{\partial x} a_{1}+\frac{\partial N_{2}^{(1)}}{\partial x} a_{2}\right) d x=\int_{0}^{1 / 3} N_{1}^{(1)} \cdot f d x+R_{0}
$$

For I= 2

$$
\int_{0}^{1 / 3} \frac{\partial N_{2}{ }^{(1)}}{\partial x}\left(\frac{\partial N_{1}^{(1)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(1)}}{\partial x} a_{2}\right) d x+\int_{1 / 3}^{2 / 3} \frac{\partial N_{1}^{(2)}}{\partial x}\left(\frac{\partial N_{1}^{(2)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(2)}}{\partial x} a_{2}\right) d x=\int_{1 / 3}^{2 / 3} N_{1}^{(1)} \cdot f d x+\int_{0}^{1 / 3} N_{1}^{(2)} \cdot f d x
$$

For I = 3

$$
\int_{1 / 3}^{2 / 3} \frac{\partial N_{2}{ }^{(2)}}{\partial x}\left(\frac{\partial N_{1}{ }^{(2)}}{\partial x} a_{1}+\frac{\partial N_{2}^{(2)}}{\partial x} a_{2}\right) d x+\int_{1 / 3}^{2 / 3} \frac{\partial N_{1}{ }^{(3)}}{\partial x}\left(\frac{\partial N_{1}{ }^{(3)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(3)}}{\partial x} a_{2}\right) d x=\int_{1 / 3}^{2 / 3} N_{1}{ }^{(1)} \cdot f d x+\int_{0}^{1 / 3} N_{1}^{(2)} \cdot f d x
$$

For $\mathrm{I}=4$

$$
\int_{2 / 3}^{1} \frac{\partial N_{2}^{(3)}}{\partial x}\left(\frac{\partial N_{1}^{(3)}}{\partial x} a_{1}+\frac{\partial N_{2}^{(3)}}{\partial x} a_{2}\right) d x=\int_{2 / 3}^{1} N_{2}^{(3)} \cdot f d x+R_{1}
$$

All this can be written and compute as:

And we have:
$\left[\begin{array}{cccc}k 11(1) & k 12(1) & 0 & 0 \\ k 21(1) & k 22(1)+k 11(2) & k 12(2) & 0 \\ 0 & k 21(2) & k 22(2)+k 11(3) & k 12(3) \\ 0 & 0 & k 21(3) & k 22(3)\end{array}\right\} \quad\left\{\begin{array}{l}u 1 \\ u 2 \\ u 3 \\ u 4\end{array}\right\} \quad\left\{\begin{array}{l} \\ \\ \end{array}\right.$

General expressions:

$$
K_{i j}=\int_{0}^{1} \frac{d N i}{d x} \frac{d N j}{d x} d x
$$

2-noded linear element:

$$
\begin{gathered}
\frac{d N 1}{d x}=\frac{-1}{h^{(e)}} \\
\frac{d N 2}{d x}=\frac{1}{h^{(e)}} \\
N_{1}^{(e)}=\frac{x_{2}^{(e)}-x}{h^{(e)}} \\
N_{2}^{(e)}=\frac{x-x_{1}^{(e)}}{h^{(e)}}
\end{gathered}
$$

In our problem we have $n=3$ and $h=1 / n=1 / 3$
$k_{11}^{(e)}=k_{22}^{(e)}=\int_{0}^{1 / 3} \frac{d N 1}{d x} \frac{d N 1}{d x} d x=\int_{0}^{1 / 3} \frac{1}{\frac{-1}{3}} \cdot \frac{1}{\frac{-1}{3}} d x=9 x_{\downarrow}=3$

$$
\text { For } 0 \text { to } 1 / 3
$$

$k_{21}^{(e)}=k_{12}^{(e)}=\int_{0}^{1 / 3} \frac{d N 2}{d x} \frac{d N 2}{d x} d x=\int_{0}^{1 / 3} \frac{1}{\frac{-1}{3}} \cdot \frac{1}{\frac{1}{3}} d x=-9 x=-3$
For 0 to $1 / 3$
The value of k is the same for all the elements that I have because h is the same for the 3 elements.
3. The function given:

$$
\begin{gathered}
f(x)=\sin (x) \\
\alpha=3
\end{gathered}
$$

```
\(f_{1}^{(1)}=\int_{0}^{1 / 3} N_{1}^{(1)} \cdot f(x) d x=\int_{0}^{1 / 3} \frac{x_{2}^{(1)}-x}{h^{(1)}} \cdot \sin (x) d x=\int_{0}^{1 / 3} \frac{x_{2}^{(1)}}{h^{(1)}} \cdot \sin (x) d x+\int_{0}^{1 / 3} \frac{-x}{h^{(1)}} \cdot \sin (x) d x=\)
\(\frac{-x_{2}^{(1)}}{h^{(1)}} \cdot \cos (x)-\frac{1}{h^{(1)}} \cdot(\sin (x)-x \cdot \cos (x))=-1-3 \cdot \sin (1 / 3)=0.0184\)
    For 0 to \(1 / 3\)
    For 0 to \(1 / 3\)
```

$f_{2}^{(1)}=\int_{0}^{1 / 3} N_{2}^{(1)} \cdot f(x) d x=\int_{0}^{1 / 3} \frac{x-x_{1}^{(1)}}{h^{(1)}} \cdot \sin (x) d x=3(\sin (1 / 3)-(1 / 3) \cdot \cos (1 / 3))=3 \cdot \sin (1 / 3)-\cos (1 / 3)=$ 0.0366
 $(1 / 3)-3 \sin (2 / 3)+3 \sin (1 / 3)-\cos (1 / 3)=0.0714$
$f_{2}^{(2)}=\int_{1 / 3}^{2 / 3} N_{1}^{(2)} \cdot f(x) d x=\int_{1 / 3}^{2 / 3} \frac{-x 2}{h} \cdot \sin (x) d x+\int_{1 / 3}^{2 / 3} \frac{x}{h} \cdot \sin (x) d x=-\frac{x 2}{h} \cdot \cos (x)+\frac{1}{h} \cdot(\sin (x)-$ $x \cdot \cos x)=\cos (2 / 3)+3 \cdot \sin (2 / 3)-3 \cdot \sin (1 / 3)=0.0877$
$f_{1}^{(3)}=\int_{2 / 3}^{1} \frac{x 4}{h} \cdot \sin (x) d x+\int_{2 / 3}^{1} \frac{-x}{h} \cdot \sin (x) d x=-\frac{x 4}{h} \cdot \cos (x)-\frac{1}{h} \cdot(\sin (x)-x \cdot \cos (x))=\cos (2 / 3)$ $-3 \sin (1)+3 \sin (2 / 3)=0.1163$
$f_{2}^{(3)}=\int_{2 / 3}^{1} \frac{-x 3}{h} \cdot \sin (x) d x+\int_{2 / 3}^{1} \frac{x}{h} \cdot \sin (x) d x=\frac{x 3}{h} \cdot \cos (x)+\frac{1}{h} \cdot(\sin (x)-x \cdot \cos (x))=-\cos (1)+$ $3 \sin (1)-3 \sin (2 / 3)=0.1291$

Then the matrix reads:

$$
3\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
\mathrm{u} \\
v \\
3
\end{array}\right]=\left[\begin{array}{c}
0.0184+c \\
0.108 \\
0.2042 \\
0.1291+d
\end{array}\right]
$$

Where

$R O=c ; R 1=d ; u=a 2 ; v=a 3$

We solve this and we obtaine:
$9 a_{3}=18.5164$
$a_{3}=2.0573$
$6 a_{2}=0.108+3 a_{3}$
$a_{2}=1.0466$

For the exact solution we have:

$$
u(x)=\sin (x)+3(\sin (1)) x
$$

And with this:
$u(0)=1.0467$
$u(1 / 3)=1.0467$
$u(2 / 3)=2.0573$
$u(1)=3$
so the FEM solution is equal to the exact solution.

