Finite Elements - Homework 1
 Paris Dilip Mulye
 November 8, 2015

Given:

$$
\frac{\partial^{2} u(x)}{\partial x^{2}}+f(x)=0
$$

- The domain of x is $(0,1)$
- Boundary condition are $u(0)=0$ and $u(1)=\alpha$
- The domain consists of n nodes
- There are n-1 elements (2 noded elements) of equal lengths
- The elements are linear (variation of $u(x)$ within the element is linear)

Solution:

To obtain the weak form, we define $w(x)$ such that for any $w(x)$, satisfying the following equation is the necessary and sufficient condition to satisfy the given differential equation.

$$
\int_{l} w \frac{\partial^{2} u(x)}{\partial x^{2}} d x+\int_{l} w f(x) d x=0
$$

Integrating by parts for the first term,

$$
\left[w \frac{\partial u}{\partial x}\right]_{x=0}^{x=1}-\int_{l} \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} d x+\int_{l} w f d x=0
$$

Multiplying by -1 and shifting sides,

$$
\int_{l} \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} d x=\int_{l} w f d x+\left[w \frac{\partial u}{\partial x}\right]_{x=0}^{x=1}
$$

This represents the weak form of the given differential function.
Now, u can be approximated by u^{h} such that,

$$
u^{h}=N_{1}(x) u_{1}+N_{2}(x) u_{2}+\ldots+N_{n}(x) u_{n}=\sum_{j=1}^{n} N_{j}(x) u_{j}
$$

Where, $u_{1}, u_{2}, \ldots, u_{n}$ are the values of $\mathrm{u}(\mathrm{x})$ at nodes $1,2, \ldots, \mathrm{n}$ respectively. On the other hand, $N_{1}, N_{2}, \ldots, N_{n}$ are global shape functions defined as follows,

$N_{1}(x)$ has value 1 at node 1 and it is 0 at all other nodes (shown in blue color)
$N_{2}(x)$ has value 1 at node 2 and it is 0 at all other nodes (shown in red color)
$N_{3}(x)$ has value 1 at node 3 and it is 0 at all other nodes (shown in green color) and so on...
Substituting u^{h} in the weak form,

$$
\begin{aligned}
& \int_{l} \frac{\partial w}{\partial x} \frac{\partial \sum_{j=1}^{n} N_{j}(x) u_{j}}{\partial x} d x=\int_{l} w f d x+\left[w \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1} \\
& \int_{l} \frac{\partial w}{\partial x} \sum_{j=1}^{n} \frac{\partial N_{j}}{\partial x} u_{j} d x=\int_{l} w f d x+\left[w \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1}
\end{aligned}
$$

In out system, we have n unknowns, u of $\mathrm{n}-2$ nodes and 2 fluxes at both the ends of the domain. Thus we need n equations. Based on the above derivation of weak form, this equation is valid for every value of $w(x)$. So to obtain n equations, we take n functions $w_{1}, w_{2}, \ldots, w_{n}$ all of which should satisfy the above equation. So we get system of equations which can be written in a compact form like this,

$$
\int_{l} \frac{\partial w_{i}}{\partial x} \sum_{j=1}^{n} \frac{\partial N_{j}}{\partial x} u_{j} d x=\int_{l} w_{i} f d x+\left[w_{i} \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1} \quad i=1,2,3, \ldots, n
$$

Choosing Galerkin's Method, we take

$$
w_{i}=N_{i}
$$

Substituting in the equation,

$$
\int_{l} \frac{\partial N_{i}}{\partial x} \sum_{j=1}^{n} \frac{\partial N_{j}}{\partial x} u_{j} d x=\int_{l} N_{i} f d x+\left[N_{i} \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1} \quad i=1,2,3, \ldots, n
$$

The last term in the equation,

$$
\left[N_{i} \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1}
$$

for $i=1$,

$$
\left[N_{1} \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1}=-\left[\frac{\partial u^{h}}{\partial x}\right]_{x=0}=-Q_{1}
$$

Since N_{1} at $x=1$ is 0 and N_{1} at $x=0$ is 1
for $i=2$,

$$
\left[N_{2} \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1}=0
$$

Since N_{2} at $x=1$ is 0 and N_{2} at $x=0$ is 0
Similarly, all the $N_{i} i \neq 1$ and $i \neq n$, the above term will be zero. for $i=n$,

$$
\left[N_{n} \frac{\partial u^{h}}{\partial x}\right]_{x=0}^{x=1}=\left[\frac{\partial u^{h}}{\partial x}\right]_{x=1}=Q_{n}
$$

Since N_{n} at $x=1$ is 1 and N_{n} at $x=0$ is 0
Therefore, the above equation can be written in matrix formulation.

$$
\left[\begin{array}{cccc}
K_{11} & K_{12} & \ldots & K_{1 n} \\
K_{21} & K_{22} & \ldots & K_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
K_{n 1} & K_{n 2} & \ldots & K_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\ldots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
F_{1}-Q_{1} \\
F_{2} \\
\ldots \\
F_{n}+Q_{n}
\end{array}\right]
$$

Where,

$$
K_{i j}=\int_{l} \frac{\partial N_{i}}{\partial x} \frac{\partial N_{j}}{\partial x} d x \quad F_{i}=\int_{l} N_{i} f d x
$$

Now, we can convert the Global Shape Functions to Local Shape Functions. For any general element in domain, 1 and 2 are the local nodes.
N_{1}^{e} and N_{2}^{e} are the local shape functions defined as,

$$
\begin{aligned}
& N_{1}^{e}=\frac{x_{2}^{e}-x}{l^{e}} \\
& N_{2}^{e}=\frac{x-x_{1}^{e}}{l^{e}}
\end{aligned}
$$

$\mathrm{n}=$ number of nodes, $l^{e}=$ the length of the element

Comparing the shapes of global and local shape functions, we get (Note: $h=1 / n$)

Global Functions	$0 \leq x \leq h$	$h \leq x \leq 2 h$	$2 h \leq x \leq 3 h$	\ldots	$1-h \leq x \leq 1$
N_{1}	N_{1}^{1}	0	0	\ldots	0
N_{2}	N_{2}^{1}	N_{1}^{2}	0	\ldots	0
N_{3}	0	N_{2}^{2}	N_{1}^{3}	\ldots	0
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
N_{n}	0	0	0	\ldots	N_{2}^{n-1}

Let's calculate different $K_{i j}$

$$
\begin{gathered}
K_{11}=\int_{l} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{1}}{\partial x} d x=\int_{0}^{h} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{1}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{1}}{\partial x} d x+\ldots+\int_{1-h}^{1} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{1}}{\partial x} d x \\
K_{11}=\int_{0}^{h} \frac{\partial N_{1}^{1}}{\partial x} \frac{\partial N_{1}^{1}}{\partial x} d x+0+\ldots+0=K_{11}^{1} \\
K_{12}=\int_{l} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{2}}{\partial x} d x=\int_{0}^{h} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{2}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{2}}{\partial x} d x+\ldots+\int_{1-h}^{1} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{2}}{\partial x} d x \\
K_{12}=\int_{0}^{h} \frac{\partial N_{1}^{1}}{\partial x} \frac{\partial N_{2}^{1}}{\partial x} d x+0+\ldots+0=K_{12}^{1} \\
K_{13}=\int_{l} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{3}}{\partial x} d x=\int_{0}^{h} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{3}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{3}}{\partial x} d x+\ldots+\int_{1-h}^{1} \frac{\partial N_{1}}{\partial x} \frac{\partial N_{3}}{\partial x} d x=0
\end{gathered}
$$

Because, N_{3} in domain $(0, h)$ is 0 and N_{1} in domain $(h, 1)$ is 0 . Similarly, $K_{14}, K_{15}, \ldots, K_{1 n}$ are all zero.

$$
\begin{gathered}
K_{21}=\int_{l} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{1}}{\partial x} d x=\int_{0}^{h} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{1}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{1}}{\partial x} d x+\ldots+\int_{1-h}^{1} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{1}}{\partial x} d x \\
K_{21}=\int_{0}^{h} \frac{\partial N_{2}^{1}}{\partial x} \frac{\partial N_{1}^{1}}{\partial x} d x+0+\ldots+0=K_{21}^{1} \\
K_{22}=\int_{l} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{2}}{\partial x} d x=\int_{0}^{h} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{2}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{2}}{\partial x} d x+\ldots+\int_{1-h}^{1} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{2}}{\partial x} d x \\
K_{22}=\int_{0}^{h} \frac{\partial N_{2}^{1}}{\partial x} \frac{\partial N_{2}^{1}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{1}^{2}}{\partial x} \frac{\partial N_{1}^{2}}{\partial x} d x=K_{22}^{1}+K_{11}^{2}
\end{gathered}
$$

Because $N_{2}=0$ in domain $(2 h, 1)$
$K_{23}=\int_{l} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{3}}{\partial x} d x=\int_{0}^{h} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{3}}{\partial x} d x+\int_{h}^{2 h} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{3}}{\partial x} d x+\ldots+\int_{1-h}^{1} \frac{\partial N_{2}}{\partial x} \frac{\partial N_{3}}{\partial x} d x=\int_{h}^{2 h} \frac{\partial N_{1}^{2}}{\partial x} \frac{\partial N_{2}^{2}}{\partial x} d x=K_{12}^{2}$
Because, N_{3} in domain $(0, h)$ is 0 and N_{2} in domain $(2 h, 1)$ is 0 . Similarly, $K_{24}, K_{25}, \ldots, K_{2 n}$ are all zero. This is the beauty of the shape functions, the integration over the whole range comes down to the range where both the shape functions are non-zero. Using similar procedure other $K_{i j}$ can be found.

Let's calculate different F_{i}
Again, due to shape functions property, we don't have to integrate over the whole range, just do it on the range where the shape function is non-zero.

$$
\begin{gathered}
F_{1}=\int_{0}^{1} N_{1} f d x=\int_{0}^{h} N_{1}^{1} f d x=F_{1}^{1} \\
F_{2}=\int_{0}^{1} N_{2} f d x=\int_{0}^{h} N_{2}^{1} f d x+\int_{h}^{2 h} N_{1}^{2} f d x=F_{2}^{1}+F_{1}^{2} \\
F_{3}=\int_{0}^{1} N_{3} f d x=\int_{h}^{2 h} N_{2}^{2} f d x+\int_{2 h}^{3 h} N_{1}^{3} f d x=F_{2}^{2}+F_{3}^{1}
\end{gathered}
$$

and so on. Thus the global system of equations now can be written in the local form.

$$
\left[\begin{array}{ccccccc}
K_{11}^{1} & K_{12}^{1} & 0 & 0 & 0 & \ldots & 0 \\
K_{21}^{1} & K_{22}^{1}+K_{11}^{2} & K_{12}^{2} & 0 & 0 & \ldots & 0 \\
0 & K_{21}^{2} & K_{22}^{2}+K_{11}^{3} & K_{12}^{3} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots & K_{22}^{n-1}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\ldots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
F_{1}^{1}-Q_{1} \\
F_{2}^{1}+F_{1}^{2} \\
F_{2}^{2}+F_{1}^{3} \\
\ldots \\
F_{2}^{n-1}+Q_{n}
\end{array}\right]
$$

In the given problem, nodes $=4$ (3 elements). So the above matrix can be written as

$$
\left[\begin{array}{cccc}
K_{11}^{1} & K_{12}^{1} & 0 & 0 \\
K_{21}^{1} & K_{22}^{1}+K_{11}^{2} & K_{12}^{2} & 0 \\
0 & K_{21}^{2} & K_{22}^{2}+K_{11}^{3} & K_{12}^{3} \\
0 & 0 & K_{21}^{3} & K_{22}^{3}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{c}
F_{1}^{1}-Q_{1} \\
F_{2}^{1}+F_{1}^{2} \\
F_{2}^{2}+F_{1}^{3} \\
F_{2}^{3}+Q_{4}
\end{array}\right]
$$

Comment: In the above equation, the only unknowns are $u 2, u 3, Q_{1}$ and Q_{4}. Thus, the total unknowns are 4 and we have 4 equations. Let's calculate all the known terms in the matrix.

$$
\begin{gathered}
\frac{\partial N_{1}^{e}}{\partial x}=-\frac{1}{l^{e}}=-3 \\
\frac{\partial N_{2}^{e}}{\partial x}=\frac{1}{l^{e}}=3
\end{gathered}
$$

Calculating different $K_{i j}^{e}$
Element 1

$$
\begin{aligned}
K_{11}^{1}=\int_{0}^{1 / 3} \frac{\partial N_{1}^{1}}{\partial x} \frac{\partial N_{1}^{1}}{\partial x} d x=3 & K_{12}^{1}=\int_{0}^{1 / 3} \frac{\partial N_{1}^{1}}{\partial x} \frac{\partial N_{2}^{1}}{\partial x} d x=-3 \\
K_{21}^{1}=\int_{0}^{1 / 3} \frac{\partial N_{2}^{1}}{\partial x} \frac{\partial N_{1}^{1}}{\partial x} d x=-3 & K_{22}^{1}=\int_{0}^{1 / 3} \frac{\partial N_{2}^{1}}{\partial x} \frac{\partial N_{2}^{1}}{\partial x} d x=3
\end{aligned}
$$

Element 2

$$
K_{11}^{2}=\int_{1 / 3}^{2 / 3} \frac{\partial N_{1}^{2}}{\partial x} \frac{\partial N_{1}^{2}}{\partial x} d x=3 \quad K_{12}^{2}=\int_{1 / 3}^{2 / 3} \frac{\partial N_{1}^{2}}{\partial x} \frac{\partial N_{2}^{2}}{\partial x} d x=-3
$$

$$
K_{21}^{2}=\int_{1 / 3}^{2 / 3} \frac{\partial N_{2}^{2}}{\partial x} \frac{\partial N_{1}^{2}}{\partial x} d x=-3 \quad K_{22}^{2}=\int_{1 / 3}^{2 / 3} \frac{\partial N_{2}^{2}}{\partial x} \frac{\partial N_{2}^{2}}{\partial x} d x=3
$$

Element 3

$$
\begin{array}{ll}
K_{11}^{3}=\int_{2 / 3}^{1} \frac{\partial N_{1}^{3}}{\partial x} \frac{\partial N_{1}^{3}}{\partial x} d x=3 & K_{12}^{3}=\int_{2 / 3}^{1} \frac{\partial N_{1}^{3}}{\partial x} \frac{\partial N_{2}^{3}}{\partial x} d x=-3 \\
K_{21}^{3}=\int_{2 / 3}^{1} \frac{\partial N_{2}^{3}}{\partial x} \frac{\partial N_{1}^{3}}{\partial x} d x=-3 & K_{22}^{3}=\int_{2 / 3}^{1} \frac{\partial N_{2}^{3}}{\partial x} \frac{\partial N_{2}^{3}}{\partial x} d x=3
\end{array}
$$

Calculating different F_{i}^{e}

$$
\begin{array}{ll}
F_{1}^{1}=\int_{0}^{1 / 3} N_{1}^{1} f d x=\int_{0}^{1 / 3} \frac{1 / 3-x}{1 / 3} \sin (x) d x=1-3 \sin (1 / 3) & =1.841590961 e-002 \\
F_{2}^{1}=\int_{0}^{1 / 3} N_{2}^{1} f d x=\int_{0}^{1 / 3} \frac{x-0}{1 / 3} \sin (x) d x=3 \sin (1 / 3)-\cos (1 / 3) & =3.662714407 e-002 \\
F_{1}^{2}=\int_{1 / 3}^{2 / 3} N_{1}^{2} f d x=\int_{1 / 3}^{2 / 3} \frac{2 / 3-x}{1 / 3} \sin (x) d x=\cos (1 / 3)-3 \sin (2 / 3)+3 \sin (1 / 3) & =7.143162749 e-002 \\
F_{2}^{2}=\int_{1 / 3}^{2 / 3} N_{2}^{2} f d x=\int_{1 / 3}^{2 / 3} \frac{x-1 / 3}{1 / 3} \sin (x) d x=3 \sin (2 / 3)-\cos (2 / 3)-3 \sin (1 / 3) & =8.763805804 e-002 \\
F_{1}^{3}=\int_{2 / 3}^{1} N_{1}^{3} f d x=\int_{2 / 3}^{1+} \frac{2 / 3-x}{1 / 3} \sin (x) d x=\cos (2 / 3)-3 \sin (1)+3 \sin (2 / 3) & =1.165837156 e-001 \\
F_{2}^{3}=\int_{2 / 3}^{1} N_{2}^{3} f d x=\int_{2 / 3}^{1} \frac{x-2 / 3}{1 / 3} \sin (x) d x=3 \sin (1)-\cos (1)-3 \sin (2 / 3) & =1.290012393 e-001
\end{array}
$$

The matrix becomes,

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & -3 & 0 & 0 \\
-3 & 3+3 & -3 & 0 \\
0 & -3 & 3+3 & -3 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{c}
0 \\
u_{2} \\
u_{3} \\
3
\end{array}\right]=\left[\begin{array}{c}
1.841590961 e-002-Q_{1} \\
3.662714407 e-002+7.143162749 e-002 \\
8.763805804 e-002+1.165837156 e-001 \\
1.290012393 e-001+Q_{4}
\end{array}\right]} \\
& \qquad\left[\begin{array}{cccc}
3 & -3 & 0 & 0 \\
-3 & 6 & -3 & 0 \\
0 & -3 & 6 & -3 \\
0 & 0 & -3 & 3
\end{array}\right]\left[\begin{array}{c}
0 \\
u_{2} \\
u_{3} \\
3
\end{array}\right]=\left[\begin{array}{c}
1.841590961 e-002-Q_{1} \\
1.080587716 e-001 \\
2.042217736 e-001 \\
1.290012393 e-001+Q_{4}
\end{array}\right]
\end{aligned}
$$

$$
\begin{align*}
-3 u_{2} & =1.841590961 e-002-Q_{1} \tag{1}\\
6 u_{2}-3 u_{3} & =1.080587716 e-001 \tag{2}\\
-3 u_{2}+6 u_{3}-9 & =2.042217736 e-001 \tag{3}\\
-3 u_{3}+9 & =1.290012393 e-001+Q_{4} \tag{4}
\end{align*}
$$

Solving, equation (2) and (3), we get

$$
\begin{aligned}
u_{3} & =2.045382616 \\
u_{2} & =1.040701103 \\
Q_{1} & =3.158529015 \\
Q_{4} & =2.734850913
\end{aligned}
$$

Actual Solutions from analytic equation,

$$
\begin{aligned}
u_{3} & =2.057389147 \\
u_{2} & =1.046704369 \\
Q_{1} & =3.158529015 \\
Q_{4} & =2.698831321
\end{aligned}
$$

Absolute Percentage Error in values,

$$
\begin{aligned}
& \operatorname{Error}\left(u_{3}\right): 0.58 \% \\
& \operatorname{Error}\left(u_{2}\right): 0.57 \% \\
& \operatorname{Error}\left(Q_{1}\right): 0 \% \\
& \operatorname{Error}\left(Q_{4}\right): 1.32 \%
\end{aligned}
$$

