Homework 1: Basics of FE

Consider the following differential equation:

$$
-u^{\prime \prime}=f \text { in }[0,1]
$$

with the boundary conditions $u(0)=0$ and $u(1)=\alpha$.
The Finite Element discretization is a 2 -noded linear mesh given by the nodes $x_{i}=$ ih for $i=0,1, \ldots, n$ and $h=1 / n$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.
2. Describe the linear system of equations to be solved.
3. Compute the FE approximation u^{h} for $n=3, f(x)=\sin x$ and $\alpha=3$. Compare it with the exact solution $u(x)=\sin x+(3-\sin 1) x$.

1)

The strong form of the problem is:

$$
\begin{gathered}
A(u)=\left\{-\frac{d^{2} u}{d x^{2}}=f(x)\right. \\
B(u)=\left\{\begin{array}{l}
u-\bar{u}=0 \text { on } x=0,1 \\
\bar{u}(0)=0, \bar{u}(1)=\alpha
\end{array}\right.
\end{gathered}
$$

u can be approximated as:

$$
u \approx u^{h}=\sum_{i=1}^{N} N_{i}(x) u_{i}
$$

Where N_{i} are linear piecewise shape functions:

$$
N_{i}(x)=\left\{\begin{array}{cc}
\frac{x-x_{i-1}}{h} & x \in\left[x_{i-1}, x_{i}\right] \\
\frac{x_{i+1}-x}{h} & x \in\left[x_{i}, x_{i+1}\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

The derivatives of the shape functions are:

$$
\frac{d N_{i}(x)}{d x}=\left\{\begin{array}{cc}
\frac{1}{h} & x \in\left[x_{i-1}, x_{i}\right] \\
\frac{-1}{h} & x \in\left[x_{i}, x_{i+1}\right] \\
0 & \text { otherwise }
\end{array}\right.
$$

Applying the weighted residual method:

$$
\int_{0}^{1} W\left[-\frac{d^{2} u^{h}}{d x}\right] d x=\int_{0}^{1} W f d x
$$

Integrating by parts:

$$
\int_{0}^{1} \frac{d W}{d x} \frac{d u^{h}}{d x} d x=\left[W \frac{d u^{h}}{d x}\right]_{0}^{1}+\int_{0}^{1} W f d x
$$

Substituting $u^{h}=\sum_{i=1}^{N} N_{i}(x) u_{i}$:

$$
\int_{0}^{1} \frac{d W}{d x}\left[\sum_{j=1}^{N} \frac{d N_{j}(x)}{d x} u_{j}\right] d x=\left[W\left[\sum_{j=1}^{N} \frac{d N_{j}(x)}{d x} u_{j}\right]\right]_{0}^{1}+\int_{0}^{1} W f d x
$$

Using the Galerkin method ($\mathrm{W}=\mathrm{N}$):

$$
\sum_{i=1}^{N} \int_{0}^{1} \frac{d N_{i}(x)}{d x}\left[\sum_{j=1}^{N} \frac{d N_{j}(x)}{d x} u_{j}\right] d x=\left[N_{i}(x)\left[\sum_{j=1}^{N} \frac{d N_{j}(x)}{d x} u_{j}\right]\right]_{0}^{1}+\int_{0}^{1} N_{i}(x) f d x
$$

The first term in the right hand side of the equation is a "reaction" in the boundary nodes with a Dirichlet boundary condition. This term does not contribute to the solution (u(0) and $u(1)$ are known) and can be computed after solving the system.

2)

For an arbitrary element " e ":

$$
\sum_{i=1}^{2} \int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d N_{i}^{e}(x)}{d x}\left[\frac{d N_{1}^{e}(x)}{d x} u_{1}\right] d x=\int_{x_{1}^{e}}^{x_{2}^{e}} N_{i}^{e}(x) f d x
$$

This system of equations can be expressed as:

$$
\left[\begin{array}{ll}
K_{11}^{e} & K_{12}^{e} \\
K_{21}^{e} & K_{22}^{e}
\end{array}\right]\left[\begin{array}{l}
u_{1}^{e} \\
u_{2}^{e}
\end{array}\right]=\left[\begin{array}{l}
f_{1}^{e} \\
f_{2}^{e}
\end{array}\right]
$$

Where:

$$
\begin{gathered}
K_{11}^{e}=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d N_{1}^{e}(x)}{d x} \frac{d N_{1}^{e}(x)}{d x} d x=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{1}{h^{2}} d x=\frac{1}{h} \\
K_{12}^{e}=K_{21}^{e}=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d N_{1}^{e}(x)}{d x} \frac{d N_{2}^{e}(x)}{d x} d x=\int_{x_{1}^{e}}^{x_{2}^{e}}-\frac{1}{h^{2}} d x=-\frac{1}{h} \\
K_{22}^{e}=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{d N_{2}^{e}(x)}{d x} \frac{d N_{2}^{e}(x)}{d x} d x=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{1}{h^{2}} d x=\frac{1}{h}
\end{gathered}
$$

$$
\begin{aligned}
f_{1}^{e} & =\int_{x_{1}^{e}}^{x_{2}^{e}} N_{1}^{e}(x) \cdot \sin (x) d x=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{x_{2}^{e}-x}{h} \cdot \mathrm{f}(x) d x \\
f_{2}^{e} & =\int_{x_{1}^{e}}^{x_{2}^{e}} N_{2}^{e}(x) \cdot \sin (x) d x=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{x-x_{1}^{e}}{h} \cdot \mathrm{f}(x) d x
\end{aligned}
$$

The general system of equations is:

$$
\left[\begin{array}{ccccccc}
K_{11}^{1} & K_{12}^{1} & 0 & . . & . . & . . & . . \\
K_{21}^{1} & K_{22}^{1}+K_{11}^{2} & K_{12}^{2} & . . & . . & . . & . . \\
0 & K_{21}^{2} & K_{22}^{2}+K_{11}^{3} & . . & . . & . . & . . \\
: & : & : & & . . & . . & . . \\
: & : & : & : & K_{22}^{n-2}+K_{11}^{n-1} & K_{12}^{n-1} & 0 \\
: & : & : & : & K_{21}^{n-1} & K_{22}^{n-1}+K_{11}^{n} & K_{12}^{n} \\
: & : & : & : & 0 & K_{21}^{n} & K_{22}^{n}
\end{array}\right]\left[\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
: \\
: \\
u_{n-1} \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1}^{1}+R_{1} \\
f_{2}^{1}+f_{1}^{2} \\
f_{2}^{2}+f_{1}^{3} \\
: \\
: \\
f_{2}^{n-2}+f_{1}^{n-1} \\
f_{2}^{n-1}+R_{n}
\end{array}\right]
$$

Where R_{1} and R_{n} are the "reactions". Since u_{1} and u_{n} are already known, the linear system of equations that must be solved is:

$$
\left[\begin{array}{ccccc}
K_{22}^{1}+K_{11}^{2} & K_{12}^{2} & . . & . . & . . \\
K_{21}^{2} & K_{22}^{2}+K_{11}^{3} & . . & . . & . . \\
: & : & & . . & . . \\
: & : & : & K_{22}^{n-2}+K_{11}^{n-1} & K_{12}^{n-1} \\
: & : & : & K_{21}^{n-1} & K_{22}^{n-1}+K_{11}^{n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
: \\
: \\
u_{n-1}
\end{array}\right]=\left[\begin{array}{c}
f_{2}^{1}+f_{1}^{2}-K_{21}^{1} u_{0} \\
f_{2}^{2}+f_{1}^{3} \\
: \\
: \\
f_{2}^{n-2}+f_{1}^{n-1}-K_{12}^{n} u_{n}
\end{array}\right]
$$

3)

The mesh is composed by 3 linear 2-noded elements and 4 nodes.
The shape functions are:

For an arbitrary element:

$$
\left\{\begin{array}{c}
K_{11}^{e}=K_{22}^{e}=\frac{1}{h}=\frac{1}{0.33}=3 \\
K_{12}^{e}=K_{21}^{e}=-\frac{1}{h}=-\frac{1}{0.33}=-3 \\
f_{1}^{e}=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{x_{2}^{e}-x}{h} \cdot \sin (x) d x=\cos \left(x_{1}^{e}\right)+\frac{\sin x_{1}^{e}-\sin x_{2}^{e}}{h} \\
f_{2}^{e}=\int_{x_{1}^{e}}^{x_{2}^{e}} \frac{x-x_{1}^{e}}{h} \cdot \sin (x) d x=-\cos \left(x_{2}^{e}\right)+\frac{\sin x_{2}^{e}-\sin x_{1}^{e}}{h}
\end{array}\right.
$$

The system of equations is:

$$
\left[\begin{array}{cc}
K_{22}^{1}+K_{11}^{2} & K_{12}^{2} \\
K_{21}^{2} & K_{22}^{2}+K_{11}^{3}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{c}
f_{2}^{1}+f_{1}^{2}-K_{21}^{1} \cdot 0 \\
f_{2}^{2}+f_{1}^{3}-K_{12}^{4} \alpha
\end{array}\right]
$$

So:

$$
\left[\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right]\left[\begin{array}{l}
u_{1}^{e} \\
u_{2}^{e}
\end{array}\right]=\left[\begin{array}{c}
0.0366+0.0714 \\
0.0876+0.1166+3 * 3
\end{array}\right]
$$

The results are:

$$
\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
1.047 \\
2.057
\end{array}\right]
$$

Since the exact solution of " u " is a line, we could have solved this problem just using 3 nodes and 2 elements:

The same result is obtained when using more elements:

