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1. Strong form of the problem in the reduced domain. Indicate the Boundary Conditions in 

every edge 

The strong form of this problem consists on the governing differential equations, the 

constitutive equation and the boundary conditions. 

Differential equation: 

∇𝜎 + 𝜌𝑏 = 0 

Constitutive equations, define the relationship between strain and stresses. 

𝜎 = 𝐷𝜀 

The boundary conditions for this problem are restrictions or impositions of the 

displacements: 

𝑢 = 0 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 1 ,2, 3, 5 𝑎𝑛𝑑 6 

𝑣 = 0 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 1,2 𝑎𝑛𝑑 3 

𝑣 = 𝛿 𝑓𝑜𝑟 𝑛𝑜𝑑𝑒 6, 𝑤𝑒 𝑕𝑎𝑣𝑒 𝑎𝑛 𝑖𝑚𝑝𝑜𝑠𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

 

2. Arrays of the nodal coordinates X and the connectivitiy matrix T. 

𝑋 =

 
 
 
 
 
 

0      0
1.5   0
3      0
1.5 1.5
3     1.5
3       3  

 
 
 
 
 

                              𝑇 =  

2    4   1
4    2    5
3    5    2
5    6    4

  

3. Set up the linear system of equations corresponding to the discretitzation. How many 

degrees of freedom has the system to be solved? 
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This problem consist on a plane model, therefore the constitutive matrix has the structure: 

 

The components of the matrix take the following form because the fact that its a plane 

stress problem and an isotropic material (same Young modulus and Poisson ratio en every 

direction). 

 

The strains can be obtained from the derivatives of the displacements as following 

 

For a FEM approximation using linear triangle elements the displacement field can be 

discretized as a function of the 3 nodal displacements of the element and the shape 

function: 

 

Each node defines a linear displacement field that can be written for each element as: 

 

Solving the system we get a discretized function for the displacement for each element: 

 

 

Then, the shape function takes the following form 
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We can calculate the discretized strains 

 

Collecting the derivative terms from the shape function into the matrix B 

 

The stresses can be related to the strains using the constitutive matrix, therefore: 

 

Applying the virtual work principle we can find an equation that describes the nodal 

equilibrium for the elements (r=thickness, t=traction, b= body force). 

 

The nodal forces are the result of the integration of the element deformation (first 

integral), the body forces (second integral) and the surface tractions (third integral). 

Substituting the stress in terms of nodal displacements, and assuming no initial stresses, 

strains or surface tractions (as in the problem) we can collect the terms in matrices to 

form the following linear system. 

 

We have to compute the stiffness matrix for every element and do the assembly to get the 

global stiffness matrix. To be able to solve the linear system we also need to impose the 

boundary conditions in every node. As we have a linear elastic problem every node has 

two degrees of freedom one for vertical displacements and the other for horizontal 

displacements. 
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The global stiffness matrix looks like this: 

Global 1 2 3 4 5 6 
1 𝐾33

1  𝐾31
1   𝐾32

1    
2 𝐾13

1  𝐾11
1 + 𝐾22

2 + 𝐾33
3  𝐾32

3  𝐾12
1 + 𝐾21

2  𝐾23
2 + 𝐾32

3   
3  𝐾13

3  𝐾11
3   𝐾12

3   
4 𝐾23

1  𝐾12
1 + 𝐾12

2   𝐾22
1 + 𝐾11

2 + 𝐾33
4  𝐾13

2 + 𝐾31
4  𝐾32

4  
5  𝐾23

2 + 𝐾23
3  𝐾21

3  𝐾31
2 + 𝐾13

4  𝐾33
2 + 𝐾22

3 + 𝐾11
4  𝐾12

4  
6    𝐾23

4  𝐾21
4  𝐾23

4  
 

As we have seen every stiffness matrix is a 2x2 matrix, so in reality we have a 12x12 global 

stiffness matrix. 

Global  

1 
𝑢1 = 0 
𝑣1 = 0 

2 
𝑢2 = 0 
𝑣2 = 0 

3 
𝑢3 = 0 
𝑣3 = 0 

4 
𝑢4 
𝑣4 

5 
𝑢5 = 0 

𝑣5 

6 
𝑢6 = 0 
𝑣6 = −𝛿 

 

When applying the boundary conditions the only unknown displacements are the 

horizontal displacements in node 4 and vertical displacements in nodes 4 and 5. The 

system will be reduced to three equations. Knowing that the only prescribed displacement 

different to 0 corresponds to the vertical displacement in node 6 the reduced system that 

we have to take into account subtracting that value to the global force vector. 

4. Compute the FE approximation 𝑢𝑕 . Use 𝐸 = 10𝐺𝑃𝑎, 𝜈 = 0.2, 𝛿 = 10−2𝑚 and 

𝜌𝑔 = 103𝑁/𝑚2 

As we have seen the linear system reduces to a matrix 3x3 after imposing the boundary 

conditions, so we don’t need to compute the stiffness matrix for all the elements. Here we 

can see the matrixes that we need to solve. 

𝐾11
1 = 0.22  3.28 · 1010 −1.4 · 1010

−1.4 · 1010 3.28 · 1010  = 𝐾11
2 = 𝐾11

4  

𝐾11
2 = 0.22  3.28 · 1010 −1.4 · 1010

−1.4 · 1010 3.28 · 1010   

𝐾13
2 = 0.22  −2.34 · 1010 9.38 · 1010

4.68 · 109 −9.382 · 109 = 𝐾13
4  

𝐾31
2 = 0.22  −2.34 · 1010 4.68 · 109

9.38 · 109 −9.38 · 109 = 𝐾31
4  
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𝐾33
2 = 0.22  2.34 · 1010 0

0 9.38 · 109 = 𝐾33
4  

𝐾22
3 = 0.22  9.38 · 109 0

0 2.34 · 109 = 𝐾22
1  

𝐾32
4 = 0.22  0 −4.68 · 109

−9.38 · 109 0
  

0.22  
6.558 · 1010 −1.4 · 1010 1.4 · 1010

−1.4 · 1010 6.558 · 1010 −1.89 · 1010

1.4 · 1010 −1.89 · 1010 6.558 · 1010

  

The body forces for each node are: 

𝑓𝑖 =
 𝐴𝑡 𝑒

3
 

0
−𝜌𝑔

  

All the elements have the same area the force vector is the same for each one of them 

𝑓𝑒 =

 
 
 
 
 
 

0
−375

0
−375

0
−375 

 
 
 
 
 

 

Doing the assembly of the global vector using the connectivity matrix we get; 

𝑓 =

 
 
 
 
 
 
 
 
 
 
 
 

0
−375

0
−1125

0
−375

0
−1125

0
−1125

0
−375  

 
 
 
 
 
 
 
 
 
 
 

 

The reduce system that we have to solve is: 

0.22  
6.558 · 1010 −1.4 · 1010 1.4 · 1010

−1.4 · 1010 6.558 · 1010 −1.89 · 1010

1.4 · 1010 −1.89 · 1010 6.558 · 1010

  

𝑢4

𝑣4

𝑣5

 = 107  
−1.0417
−0.0001
−5.2084

  

Solving the system we can get the unknown horizontal and vertical displacements, getting 

as a solution: 

 

𝑢4

𝑣4

𝑣5

 =  
−0.0001
−0.0011
−0.0039

  

 


