Finite Elements Homework 1

Daniel Díez Rodríguez

8th November 2015

Consider the following differential equation:

$$
\begin{equation*}
u^{\prime \prime}=f \tag{1}
\end{equation*}
$$

with the boundary conditions $u(0)=0$ y $u(1)=\alpha$.
The Finite Element discretization is a 2-noded linear mesh given by $x_{i}=i h$ for $i=0,1, \ldots, n$ and $h=1 / n$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.
2. Describe the linear system of equations to be solved.
3. Compute the FE approximation u^{h} for $n=3, f(x)=\sin (x)$ and $\alpha=3$. Compare it with the exact solution $u(x)=\sin (x)+(3-\sin (1)) x$.

Our function is:

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{\partial u(x)}{\partial x}\right)+f(x)=0 \tag{2}
\end{equation*}
$$

And the boundary conditions are:

$$
\begin{equation*}
\phi-\bar{\phi}=0 \tag{3}
\end{equation*}
$$

at $\mathrm{x}=0$ and $\mathrm{x}=1$
We multiply by the test function $v(x)$ and integrate.

$$
\begin{gather*}
\int_{0}^{1} v(x)\left(\frac{\partial}{\partial x}\left(\frac{\partial u(x)}{\partial x}\right)+f(x)\right) d x=\int_{0}^{1} v(x) f(x) \tag{4}\\
\int_{0}^{1} v(x)\left(\frac{\partial}{\partial x}\left(\frac{\partial u(x)}{\partial x}\right)+f(x)\right) d x=\int_{0}^{1} v(x)\left(\frac{\partial}{\partial x}\left(\frac{\partial u(x)}{\partial x}\right) d x+\int_{0}^{1} v(x) f(x)\right) d x \tag{5}
\end{gather*}
$$

First integral can be computed by parts.

$$
\begin{equation*}
\left.v(x) \frac{\partial u(x)}{\partial x}\right]_{0}^{1}-\int_{0}^{1} \frac{\partial u(x)}{\partial x} \frac{\partial v(x)}{\partial x} d x=\int_{0}^{1} v(x) f(x) d x \tag{6}
\end{equation*}
$$

Using Galerkin method:

$$
\begin{gather*}
v_{i}(x)=N_{i}(x) \tag{7}\\
u(x) \simeq u^{h}(x)=\sum_{i=0}^{n} N_{i}(x) a_{i} \tag{8}
\end{gather*}
$$

Applying these relationships to (5) we obtain:

$$
\begin{equation*}
\left.\int_{0}^{1} \frac{\partial N_{i}(x)}{\partial x} \frac{\partial N_{j}(x) a_{j}}{\partial x} d x=\int_{0}^{1} N_{i}(x) f(x) d x+N_{i} q\right]_{0}^{1} \tag{9}
\end{equation*}
$$

We can write this equation as:

$$
\begin{gather*}
K_{i j} a_{j}=f_{i} \tag{10}\\
\left(\begin{array}{llll}
K_{00} & K_{01} & K_{02} & K_{03} \\
K_{10} & K_{11} & K_{12} & K_{13} \\
K_{20} & K_{21} & K_{22} & K_{23} \\
K_{30} & K_{31} & K_{32} & K_{33}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right)
\end{gather*}
$$

where

$$
\begin{align*}
& K_{i j}=\int_{0}^{1} \frac{\partial N_{i}(x)}{\partial x} \frac{\partial N_{j}(x)}{\partial x} d x \tag{11}\\
& \left.f_{i}=\int_{0}^{1} N_{i}(x) f(x) d x+N_{i} q\right]_{0}^{1} \tag{12}
\end{align*}
$$

Now we have to compute the FE approximation u^{h} for $n=3, f(x)=\sin (x)$ and $\alpha=3$.
The bar is divided in three elements of the same length: $l^{e}=1 / 3$. We can obtain the stifness matrix and the f-vector for every element and then build the global matrix.

$$
\begin{gather*}
K_{i j}^{e}=\int_{l^{e}} \frac{\partial N_{i}^{e}(x)}{\partial x} \frac{\partial N_{j}^{e}(x)}{\partial x} d x \tag{13}\\
f_{i}^{e}=\int_{l^{e}} N_{i}^{e}(x) f(x) d x \tag{14}\\
K_{i j}=\left(\begin{array}{cccc}
K_{11}^{1} & K_{12}^{1} & 0 & 0 \\
K_{21}^{1} & K_{22}^{1}+K_{11}^{2} & K_{12}^{2} & 0 \\
0 & K_{21}^{2} & K_{22}^{2}+K_{11}^{3} & K_{112}^{3} \\
0 & 0 & K_{21}^{3} & K_{22}^{3}
\end{array}\right) \\
f_{i}=\left(\begin{array}{l}
f_{1}^{1}+q_{1} \\
f_{2}^{1}+f_{1}^{2} \\
f_{2}^{2}+f_{1}^{3} \\
f_{2}^{3}+q_{4}
\end{array}\right)
\end{gather*}
$$

We also have to define the N_{i} functions and their derivatives for each element.

$$
\begin{aligned}
& N_{1}^{1}=\frac{x_{2}-x}{l} ; \frac{d N_{1}^{1}}{d x}=-\frac{1}{l} \\
& N_{2}^{1}=\frac{x-x_{1}}{l} ; \frac{d N_{1}^{1}}{d x}=\frac{1}{l} \\
& N_{1}^{2}=\frac{x_{3}-x}{l} ; \frac{d N_{1}^{1}}{d x}=-\frac{1}{l} \\
& N_{2}^{2}=\frac{x-x_{2}}{l} ; \frac{d N_{1}^{1}}{d x}=\frac{1}{l} \\
& N_{1}^{3}=\frac{x_{4}-x}{l} ; \frac{d N_{1}^{1}}{d x}=-\frac{1}{l} \\
& N_{2}^{3}=\frac{x-x_{3}}{l} ; \frac{d N_{1}^{1}}{d x}=\frac{1}{l} \\
& K_{11}^{1}=\int_{l} \frac{\partial N_{1}^{1}(x)}{\partial x} \frac{\partial N_{1}^{1}(x)}{\partial x} d x=\int_{l} \frac{1}{l^{2}} d x=3 \\
& K_{12}^{1}=\int_{l} \frac{\partial N_{1}^{1}(x)}{\partial x} \frac{\partial N_{2}^{1}(x)}{\partial x} d x=\int_{l} \frac{1}{l^{2}} d x=-3 \\
& K_{22}^{1}=\int_{l} \frac{\partial N_{2}^{1}(x)}{\partial x} \frac{\partial N_{2}^{1}(x)}{\partial x} d x=\int_{l} \frac{1}{l^{2}} d x=3
\end{aligned}
$$

$$
\begin{aligned}
& K_{11}^{1}=K_{11}^{2}=K_{11}^{3}=3 \\
& K_{12}^{1}=K_{12}^{2}=K_{12}^{3}=K_{21}^{1}=K_{21}^{2}=K_{21}^{3}=-3 \\
& K_{22}^{1}=K_{22}^{2}=K_{22}^{3}=3 \\
& f_{1}^{1}=\int_{0}^{1 / 3} N_{1}^{1}(x) f(x) d x=\int_{0}^{1 / 3} \frac{x_{2}-x}{l^{e}} \sin (x) d x=0.018 \\
& f_{2}^{1}=\int_{0}^{1 / 3} N_{2}^{1}(x) f(x) d x=0.037 \\
& f_{1}^{2}=\int_{1 / 3}^{2 / 3} N_{1}^{2}(x) f(x) d x=0.071 \\
& f_{2}^{2}=\int_{1 / 3}^{2 / 3} N_{2}^{2}(x) f(x) d x=0.088 \\
& f_{1}^{3}=\int_{2 / 3}^{1} N_{1}^{3}(x) f(x) d x=0.117 \\
& f_{2}^{3}=\int_{2 / 3}^{1} N_{2}^{3}(x) f(x) d x=0.129 \\
& \left(\begin{array}{cccc}
3 & -3 & 0 & 0 \\
-3 & 6 & -3 & 0 \\
0 & -3 & 6 & -3 \\
0 & 0 & -3 & 3
\end{array}\right)\left(\begin{array}{c}
0 \\
a_{1} \\
a_{2} \\
3
\end{array}\right)=\left(\begin{array}{c}
0.018+q 1 \\
0.108 \\
0.205 \\
0.129+q_{4}
\end{array}\right) \\
& \left(\begin{array}{cc}
6 & -3 \\
-3 & 6
\end{array}\right)\binom{a_{1}}{a_{2}}=\binom{0.108}{0.205+9}
\end{aligned}
$$

Finally, the results are:
$a_{1}=1.059$
$a_{2}=2.051$
$q_{1}=-1.007$
$q_{4}=-0.820$

Figure 1: Comparison of exact and FE approximated values

