Name: Yuyang Wang

Email:alwyuyang@gmail.com

Dear teachers,
Due to the insufficient function of my computer, I just saved the key step for getting the answer. I would be very happy to hear from your suggestions about my work.
Thanks for your attention.
Best,
Yuyang

1 Find the weak form of the problem. Describe the FE approximation u^{h}.

$$
\int_{0}^{1} w\left(\frac{d^{2} u}{d x^{2}}+f\right) d x=0
$$

And after proper operation, I get the weak form:

$$
\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x=\left[w \frac{d u}{d x}\right]_{1}-\left[w \frac{d u}{d x}\right]_{0}+\int_{0}^{1} w f d x
$$

FE approximation:

$$
u \cong u^{h}=\sum_{j=0}^{n} N_{j} u_{j}=N_{0} u_{0}+N_{1} u_{1}+N_{2} u_{2}+\cdots+N_{n} u_{n}
$$

2 Describe the linear system of equations to be solved.
By Galerkin method and discretization process, the weak form can be written as:

$$
\begin{gathered}
\sum_{\mathrm{j}=0}^{\mathrm{n}} \int_{0}^{1} \frac{\mathrm{dN}_{\mathrm{i}}}{\mathrm{dx}} \frac{\mathrm{dN}}{\mathrm{j}} \mathrm{jx} \\
\mathrm{dx} u_{\mathrm{j}}=\left[\mathrm{N}_{\mathrm{i}} \frac{\mathrm{du}}{\mathrm{dx}}\right]_{1}-\left[\mathrm{N}_{\mathrm{i}} \frac{\mathrm{du}}{\mathrm{dx}}\right]_{0}+\int_{0}^{1} \mathrm{~N}_{\mathrm{i}} \mathrm{fdx} \\
{\left[\frac{\mathrm{du}}{\mathrm{dx}}\right]_{1}=-\overline{\mathrm{q}}} \\
{\left[\frac{\mathrm{du}}{\mathrm{dx}}\right]_{0}=-\mathrm{q}_{0}}
\end{gathered}
$$

For this part, take it as a general case in the 2 -noded element, we can get the stiffness matrix $\mathrm{K}(\mathrm{e})$ and the equivalent nodal flux vector $\mathrm{f}(\mathrm{e})$.

$$
\begin{gathered}
\mathrm{K}^{\mathrm{e}}=\left[\begin{array}{ll}
\mathrm{K}_{11}^{\mathrm{e}} & \mathrm{~K}_{12}^{\mathrm{e}} \\
\mathrm{~K}_{21}^{\mathrm{e}} & \mathrm{~K}_{22}^{\mathrm{e}}
\end{array}\right] \\
\mathrm{f}^{\mathrm{e}}=\left[\begin{array}{l}
\mathrm{f}_{1}^{\mathrm{e}} \\
\mathrm{f}_{2}^{\mathrm{e}}
\end{array}\right] \\
\mathrm{K}_{\mathrm{ij}}^{\mathrm{e}}=(-1)^{\mathrm{i}+\mathrm{j}}\left(\frac{\mathrm{k}}{\mathrm{l}}\right)^{\mathrm{e}} \\
\mathrm{f}_{\mathrm{e}}^{\mathrm{i}}=\int_{\mathrm{x} 1}^{\mathrm{x} 2} \mathrm{~N}_{\mathrm{i}}^{\mathrm{e}} \mathrm{Qdx}
\end{gathered}
$$

We obtain the global stiffness matrix K and the global equivalent nodal flux vector.

$$
\frac{1}{\mathrm{~h}} *\left[\begin{array}{ccccc}
1 & -1 & & 0 & 0 \\
-1 & 2 & \cdots & 0 & 0 \\
& & \ddots & & \vdots \\
0 & 0 & \cdots & 2 & -1 \\
0 & 0 & & -1 & 1
\end{array}\right]\left\{\begin{array}{c}
\mathrm{u}_{0} \\
\mathrm{u}_{1} \\
\vdots \\
\mathrm{u}_{\mathrm{n}-1} \\
\mathrm{u}_{\mathrm{n}}
\end{array}\right\}=\left\{\begin{array}{c}
\mathrm{f}_{1}^{1}+\mathrm{q}_{0} \\
\mathrm{f}_{2}^{1}+\mathrm{f}_{1}^{2} \\
\vdots \\
\mathrm{f}_{2}^{\mathrm{n}-2}+\mathrm{f}_{1}^{\mathrm{n}-1} \\
\mathrm{f}_{2}^{\mathrm{n}}-\overline{\mathrm{q}}
\end{array}\right\}
$$

3 Compute the FE approximation u^{h} for $n=3, f(x)=\sin x$ and $\alpha=3$. compare it with the exact solution, $\mathrm{u}(\mathrm{x})=\sin \mathrm{x}+(3-\sin 1) \mathrm{x}$.

Global	local	domain	$\frac{\mathrm{dN}^{\mathrm{e}}}{\mathrm{dx}}$
N 0	$\mathrm{~N}_{1}^{1}$	$[0,1 / 3]$	-3
N 0	0	$[1 / 3,1]$	0
N 1	$\mathrm{~N}_{2}^{1}$	$[0,1 / 3]$	3
N 1	$\mathrm{~N}_{1}^{2}$	$[1 / 3,2 / 3]$	-3
N 2	$\mathrm{~N}_{2}^{2}$	$[1 / 3,2 / 3]$	3
N 2	$\mathrm{~N}_{1}^{3}$	$[2 / 31]$	-3
N 3	$\mathrm{~N}_{2}^{3}$	$[2 / 3,1]$	3
N 3	0	$[0,2 / 3]$	0

According to the linear system of the equations and after some operations, we can get the final linear equations as follows:

$$
3 *\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & 1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)\left\{\begin{array}{l}
u_{0} \\
u_{1} \\
u_{3} \\
u_{4}
\end{array}\right\}=\left(\begin{array}{c}
\int_{0}^{\frac{1}{3}}(1-3 x) \sin (x) d x+q_{0} \\
\int_{0}^{\frac{1}{3}}(3 x) \sin (x) d x+\int_{1 / 3}^{\frac{2}{3}}(2-3 x) \sin (x) d x \\
\int_{1 / 3}^{2 / 3}(3 x-1) \sin (x) d x+\int_{2 / 3}^{1}(-3 x+3) \sin (x) d x \\
\int_{2 / 3}^{1}(3 x-2) \sin (x) d x-\bar{q}
\end{array}\right)
$$

By computing these equations, we get that $\left\{\begin{array}{c}q_{0} \\ \bar{q} \\ u_{1} \\ u_{2}\end{array}\right\}=\left\{\begin{array}{c}-3.1585 \\ -2.6989 \\ 1.0467 \\ 2.0574\end{array}\right\}$

On the other hand, the exact solution for u 1 and u 2 is 1.0467 and 2.0574 .

