Homework-1, Finite Element Methods

Carles Duñó

Considering the following differential equation:

$$
-\mathrm{u}^{\prime \prime}=\mathrm{f} \quad \rightarrow \quad-\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}=\mathrm{f} \quad \text { in }[0,1]
$$

With the boundary conditions:

$$
u(0)=0 \text { and } u(1)=\alpha
$$

The finite element discretization is a 2-noded linear mesh given by the nodes:

$$
\mathrm{x}_{i}=i h, \quad \text { and } \quad \mathrm{i}=0,1, \ldots, \mathrm{n} \quad \mathrm{~h}=1 / n
$$

Q 1: Find the weak form of the problem. Describe the FE approximation \boldsymbol{u}^{h}.

Multiplying both sides by some weighting function w and taking integral on both sides over the domain $\Omega[0,1]$:

$$
\int_{0}^{1} W_{i} \frac{\partial^{2} u}{\partial x^{2}} d x=\int_{0}^{1} W_{i} f d x
$$

Integrating by parts,

$$
\int_{0}^{1}\left\{\left[\frac{\partial^{2} u}{\partial x^{2}}\right] \cdot W\right\} d x=\left.W \frac{\partial u}{\partial x}\right|_{0} ^{1}+\int_{0}^{1} \frac{\partial W}{\partial x} \frac{\partial u}{\partial x} d x
$$

The weak form of the equation is:

$$
\int_{0}^{1} \frac{\partial W}{\partial x} \frac{\partial u}{\partial x} d x=\int_{0}^{1} W \cdot f d x+\left.W \frac{\partial u}{\partial x}\right|_{0} ^{1}
$$

Q 2: Describe the linear system of equations to be solved.

We can use a piecewise linear approximations for u in the following way:

$$
\begin{gathered}
u \approx u^{h}=\sum_{i=0}^{1} N_{j}(x) \cdot a_{j} \\
W(x)=N_{i}(x)
\end{gathered}
$$

Shape functions can be generalized as:

$$
N_{1}{ }^{(e)}(x)=\frac{x_{2}{ }^{(e)}-x}{l^{(e)}} \quad ; \quad N_{2}{ }^{(e)}(x)=\frac{x-x_{1}{ }^{(e)}}{l^{(e)}}
$$

The global set equation

$$
\begin{gathered}
\int_{0}^{1} \frac{\partial W_{i}}{\partial x} \sum_{j=0}^{n} \frac{\partial N_{j}}{\partial x} a_{j} d x=\int_{0}^{1} W_{i} \cdot f d x+\left[W_{i} \frac{\partial u}{\partial x}\right]_{1}-\left[W_{i} \frac{\partial u}{\partial x}\right]_{0} \\
\int_{0}^{1} \frac{\partial N_{i}}{\partial x}\left(\frac{\partial N_{1}}{\partial x} a_{1}+\frac{\partial N_{2}}{\partial x} a_{2}+\cdots+\frac{\partial N_{n}}{\partial x} a_{n}\right) d x=\int_{0}^{1} N_{i} \cdot f d x+\left[N_{i} \frac{\partial u}{\partial x}\right]_{1}-\left[N_{i} \frac{\partial u}{\partial x}\right]_{0}
\end{gathered}
$$

Solving for a 2-noded linear element:

$$
\begin{aligned}
k_{i j}^{(e)} & =\int_{0}^{1 / 3} \frac{\partial N_{i}^{(e)}}{\partial x}\left(\frac{\partial N_{1}^{(e)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(e)}}{\partial x} a_{2}\right) d x \\
f_{i}^{(e)} & =\int_{0}^{\frac{1}{3}} N_{i}^{(e)} \cdot f d x+\left[N_{i} \frac{\partial u}{\partial x}\right]_{1}-\left[N_{i} \frac{\partial u}{\partial x}\right]_{0}
\end{aligned}
$$

Linear System of Equation can be defined in following way:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
k_{11} & \cdots & k_{1 n} \\
\vdots & \ddots & \vdots \\
k_{n 1} & \cdots & k_{n n}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right]} \\
& {[k] \cdot[a]=[f]}
\end{aligned}
$$

Q 3: Solve the system for $n=3$

Solving for $\mathrm{n}=3$ we get the following discretization:

$$
\left[\begin{array}{cccc}
k_{11}^{(1)} & k_{12}^{(1)} & 0 & 0 \\
k_{21}^{(1)} & k_{22}^{(1)}+k_{11}^{(2)} & k_{12}^{(2)} & 0 \\
0 & k_{21}^{(2)} & k_{22}^{(2)}+k_{11}^{3} & k_{12}^{3} \\
0 & 0 & k_{21}^{3} & k_{22}^{3}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]=\left[\begin{array}{c}
f_{1}^{(1)}-\bar{q}_{0} \\
f_{2}^{(1)}+f_{1}^{(2)} \\
f_{2}^{2}+f_{1}^{3} \\
f_{2}^{(3)}+\bar{q}_{1}
\end{array}\right]
$$

$$
\begin{array}{lll}
\frac{\partial N_{1}{ }^{(1)}}{\partial x}=\frac{-1}{h^{(1)}} & \frac{\partial N_{1}{ }^{(2)}}{\partial x}=\frac{-1}{h^{(2)}} & \frac{\partial N_{1}{ }^{(3)}}{\partial x}=\frac{-1}{h^{(3)}} \\
\frac{\partial N_{2}{ }^{(1)}}{\partial x}=\frac{1}{h^{(1)}} & \frac{\partial N_{2}{ }^{(2)}}{\partial x}=\frac{1}{h^{(2)}} & \frac{\partial N_{2}{ }^{(3)}}{\partial x}=\frac{1}{h^{(3)}}
\end{array}
$$

$$
k_{11}=\int_{0}^{1 / 3} \frac{\partial N_{1}^{(1)}}{\partial x} \frac{\partial N_{1}^{(1)}}{\partial x} d x=\frac{1}{h^{2^{(1)}}} \cdot \frac{1}{3}=\frac{1}{3 h^{2^{(1)}}}=3
$$

$$
k_{12}=\int_{0}^{1 / 3} \frac{\partial N_{1}^{(1)}}{\partial x} \frac{\partial N_{2}^{(1)}}{\partial x} d x=\frac{1}{3 h^{3^{(2)}}}=-3
$$

$$
k_{22}=\int_{0}^{1 / 3} \frac{\partial N_{2}{ }^{(1)}}{\partial x} \frac{\partial N_{2}{ }^{(1)}}{\partial x} d x=\frac{1}{3 h^{2(2)}}=\frac{1}{3(1 / 3)^{2}}=3
$$

$$
k_{11}=k_{22}
$$

$$
k_{12}=k_{21}
$$

For $\mathrm{i}=1$

$$
\int_{0}^{1 / 3} \frac{\partial N_{1}{ }^{(1)}}{\partial x}\left(\frac{\partial N_{1}^{(1)}}{\partial x} a_{1}+\frac{\partial N_{2}^{(1)}}{\partial x} a_{2}\right) d x=\int_{0}^{1 / 3} N_{1}^{(1)} \cdot f d x+R_{0}
$$

For $\mathrm{i}=2$

$$
\int_{0}^{1 / 3} \frac{\partial N_{2}{ }^{(1)}}{\partial x}\left(\frac{\partial N_{1}{ }^{(1)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(1)}}{\partial x} a_{2}\right) d x+\int_{1 / 3}^{2 / 3} \frac{\partial N_{1}{ }^{(2)}}{\partial x}\left(\frac{\partial N_{1}{ }^{(2)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(2)}}{\partial x} a_{2}\right) d x=\int_{1 / 3}^{2 / 3} N_{1}{ }^{(1)} \cdot f d x+\int_{0}^{1 / 3} N_{1}{ }^{(2)} \cdot f d x
$$

For i=3

$$
\int_{1 / 3}^{2 / 3} \frac{\partial N_{2}{ }^{(2)}}{\partial x}\left(\frac{\partial N_{1}{ }^{(2)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(2)}}{\partial x} a_{2}\right) d x+\int_{1 / 3}^{2 / 3} \frac{\partial N_{1}{ }^{(3)}}{\partial x}\left(\frac{\partial N_{1}{ }^{(3)}}{\partial x} a_{1}+\frac{\partial N_{2}{ }^{(3)}}{\partial x} a_{2}\right) d x=\int_{1 / 3}^{2 / 3} N_{1}{ }^{(1)} \cdot f d x+\int_{0}^{1 / 3} N_{1}{ }^{(2)} \cdot f d x
$$

For $\mathrm{i}=4$

$$
\int_{2 / 3}^{1} \frac{\partial N_{2}{ }^{(3)}}{\partial x}\left(\frac{\partial N_{1}^{(3)}}{\partial x} a_{1}+\frac{\partial N_{2}^{(3)}}{\partial x} a_{2}\right) d x=\int_{2 / 3}^{1} N_{2}^{(3)} \cdot f d x+R_{1}
$$

Computing [f]:

$$
\begin{aligned}
& f(x)=\sin (x) ; \alpha=3 \\
& f_{1}^{(1)}=\int_{0}^{1 / 3} N_{1}{ }^{(1)} \cdot f(x) d x=\int_{0}^{1 / 3} \frac{x_{2}^{(1)}-x}{h^{(1)}} \cdot \sin (x) d x \\
& =-\left.\frac{x_{2}^{(1)}}{h^{(1)}} \cdot \cos (x)\right|_{0} ^{1 / 3}-\frac{1}{h^{(1)}} \cdot\left(\sin (x)-\left.x \cdot \cos (x)\right|_{0} ^{1 / 3}=-1-3 \cdot \sin (1 / 3)\right. \\
& =0.0184 \\
& f_{2}^{(1)}=\int_{0}^{1 / 3} N_{2}^{(1)} \cdot f(x) d x=\int_{0}^{1 / 3} \frac{x-x_{1}^{(1)}}{h^{(1)}} \cdot \sin (x) d x=3(\sin (1 / 3)-1 / 3 \cdot \cos (1 / 3)) \\
& =3 \cdot \sin (1 / 3)-\cos (1 / 3)=0.0366 \\
& f_{1}^{(2)}=\int_{\frac{1}{3}}^{2 / 3} N_{1}^{(2)} \cdot f(x) d x=\int_{\frac{1}{3}}^{2 / 3} \frac{x_{3}-x}{h} \cdot \sin (x) d x=-\left.\frac{x_{3}}{h} \cdot \cos (x)\right|_{\frac{1}{3}} ^{2 / 3}-\frac{1}{h} \cdot(\sin (x)- \\
& \left.x \cdot \cos (x)\right|_{\frac{1}{3}} ^{\frac{2}{3}}=0.0714 \\
& \begin{aligned}
f_{2}{ }^{(2)} & =\int_{\frac{1}{3}}^{2 / 3} N_{1}{ }^{(2)} \cdot f(x) d x=\int_{\frac{1}{3}}^{2 / 3} \frac{-x_{2}}{h} \cdot \sin (x) d x+\int_{\frac{1}{3}}^{2 / 3} \frac{x}{h} \cdot \sin (x) d x \\
& =-\left.\frac{x_{2}}{h} \cdot \cos (x)\right|_{\frac{1}{3}} ^{2 / 3}+\frac{1}{h} \cdot\left(\sin (x)-\left.x \cdot \cos (x)\right|_{\frac{1}{3}} ^{\frac{2}{3}}=\cos \left(\frac{2}{3}\right)+3 \sin \left(\frac{2}{3}\right)-3 \sin \left(\frac{1}{3}\right)\right. \\
& =0.0877
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
f_{1}{ }^{(3)} & =\int_{\frac{2}{3}}^{1} \frac{x_{4}}{h} \cdot \sin (x) d x+\int_{\frac{2}{3}}^{1} \frac{-x}{h} \cdot \sin (x) d x \\
& =-\left.\frac{x_{4}}{h} \cdot \cos (x)\right|_{\frac{2}{3}} ^{1}-\frac{1}{h} \cdot\left(\sin (x)-\left.x \cdot \cos (x)\right|_{\frac{2}{3}} ^{1}\right. \\
& =\cos \left(\frac{2}{3}\right)-3 \sin (1)+3 \sin \left(\frac{2}{3}\right)=0.1163 \\
f_{2}{ }^{(3)} & =\int_{\frac{2}{3}}^{1} \frac{-x_{3}}{h} \cdot \sin (x) d x+\int_{\frac{2}{3}}^{1} \frac{x}{h} \cdot \sin (x) d x=\left.\frac{x_{3}}{h} \cdot \cos (x)\right|_{\frac{2}{3}} ^{1}+\frac{1}{h} \cdot\left(\sin (x)-\left.x \cos (x)\right|_{\frac{2}{3}} ^{1}=\right. \\
& =-\cos (1)+3 \sin (1)-3 \sin \left(\frac{2}{3}\right)=0.1291
\end{aligned}
$$

The matrix reads

$$
\begin{gathered}
3 \cdot\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
a_{2} \\
a_{3} \\
3
\end{array}\right]=\left[\begin{array}{c}
0.0184+R_{0} \\
0.108 \\
0.2042 \\
0.1291+R_{1}
\end{array}\right] \\
a_{2}=1.0466 \\
a_{3}=2.0573
\end{gathered}
$$

With the exact solution:

$$
\begin{gathered}
u(x)=\sin (x)+(3-\sin (1)) \cdot x \\
u(0)=0 \\
u(1 / 3)=1.0467 \\
u(2 / 3)=2.0573 \\
u(1)=3
\end{gathered}
$$

We get the same results for all values of u from analytical solution.

