Carles Dufié Nosas 22/12/2015

Finite Elements

Homework 2: “Plane Elasticity”

1. Describe the strong form of the problem in the reduced domain (left half).
Indicate accurately the Boundary Conditions in every edge.

The strong form of this problem consists in three parts:
e Differential equation for a steady state problem.
divie) +p-b=0
e Constitutive equation to relate strains with strains.

oa=De¢

Where:

dyy diz 0 ]
D h'l-_r] ”1'2! 0
0 0 dy)

And for an isotropic elasticity in plane stress:

dyy =dy

I"flz f.|r-_a| I"{Ir“

Ff'&;

And the strains can be computed as the derivatives of the displacements

i

Er = 75— i
di Yry T
v ¥ ( 3_” Jx
-0 m Yz Tyz 0
e Boundary Conditions
o Bottom: Uy=U, =0 Nodes: 1,2, and 3
o Symmetry: U,=0 Nodes: (3), 5, and 6
o Top: U,=46 Node: 6
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2. Describe the mesh shown in figure 2 by giving the arrays of nodal coordinates X
and the connectivity matrix T. In order to simplify the computations select the
local numbering of nodes such that, in every element, the node in the right
angle vertex has local number equal to 1.

Nodal coordinates Connectivity Matrix

0 0

S 241

X=115 15 T=|223

352

3 156 564
3 3

Row: element, Col: coordinates x, y Row: element, Col: nodes

3. Set up the linear system of equations corresponding to the discretization in
figure 2. How many degrees of freedom has the system to be solved

u = Nyuy + Noug + Naus
= *“-"l (H =+ .’\'-‘__rf'g + _'\\?_-53-"-;

The FF approximation can be written in a linear form as

U = v + Qo + 3y

U= 0y + Q5T + QY

From the approximation for u" we can obtain

U] = o + Q) + O34
Uy = @ + Goly + (izifo

Uz = + Ty + (izlfy
Solving for a;, az and as and substituting gives

— H—“’?[(m + bir + ay)ur + (a2 + bx + coy)uz + (as + bz + c3y)us

Where A® is the element area and

a; = 'T.]yk _-TJ.-U., s ha — y,i — Uk 3 C; = T —J‘}' ) f*je 'I‘ - -1'2- 3



Carles Dufié Nosas 22/12/2015

From the linear approximation it can be deduced

1
Ni = A0

(; +br+ecy)| , i=1,2,3

The discretization of the strain field can be computed as

du AN, AN, ON;

Eyp = ()T = (')TUI =+ aTU.Q =+ E)TU.'_';
o AN, 0N, 0N
Ey = 0_.1} = W[.] + W'ﬂ!g + a—yi‘g
. du v ON, N, 0N, ON; ON; ON;
n.";r:_r,: = m + (}_f — au '”1 + a:r -j_-'l + au '{[2 + E)' -J"? Ou N.j‘i + a-f: !‘3

Collecting the derivative terms of the shape function in to the matrix B

Discretization of the stress field

o = De = DBa'"

With

al®) = aﬂ"J with aﬁﬂ = { Tf‘}

Applying the virtual work principle we find an equation which equilibrate the
nodal forces (r=thickness, t=traction, b= body force).

] Brotaa—[[ N'braa-§ NTtrds=q©
J Ale) J oS Ale)

Jie)

Substituting the stress in terms of nodal displacements, and assuming no initial
stresses, strains or surface tractions, it can be formed the following linear
system of equations.

K{E'Jairf} o f{!'J — q["}
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K = f . B'DBtdA

£l¢) = f N’b tdA
Ale)

N

The system has 6 nodes with 2 directions. And when applying the BC the only unknowns
leftare the vertical displacement in nodes 4 & 5 and the horitzontal one in node 4, with
that we can reduce the system to a 3 equations.

Kis + K3, + Kgs  Kis+ K3 + Kgg  Kis + Kg, us Ji+ 5+ J§ Kg,120
Kiy + K5 Kiy + K3 Kis + K3y + K3, +R+5 K10,120

Kl + K} + K}, Kl + K} + Kl K, + K2, ] [ wr ] [ A4+ ] [ K7 120 ]

10

4, Compute the FE approximation u". Use E=10GPa, v=0.2, d=0.001m and
pg=1000N/m?2. (All calculations were performed with HP 50qg calculator)

Firstly, starting with the coordinates and the connectivity matrix, the local stiffness matrix
were computed

Coordinates of the local nodes, column: node/ Line: element.

15 15 0 0 15 0
X= 1.5 15 3 Y= 15 0 15

3 3 1.5 0 1.5 0

3 3 1.5 15 3 15

With the coordinates known the areas have been computed, being all the elements equals:
A=1125m

Then the B matrix for each element has to be calculated, being equal in elements 1, 3 and 4

b = @ — @

w1 [0 b0 by — Yy
oo 241 ful ;Jt f“; ':?j r('.-]; ;1: A = JJ;__"J - 375_“-)
bi= (15 0  -15) = (15 15 0
b= (15 0 15 o= (L5 -15 0)
bi= (15 0  -15) G= (L5 15 0)
b= (15 0  -15) = (15 15 0)
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Then the matrix D is computed
di; =dzz=E/(1-V2) = 10.41 e9
diy dio 0
D= | dyy dyg 0 diz=dz =v-di; =2.08e9
0 0 l‘i_';:;
ds3s =E/2-(1+v) =G =417 e9
Being the next step to compute the local stiffness matrices, (in all the elements are equal).
C 729 -312 -208 104 -521 208 |
729 208 -521 104 -2.08
K® =109 2.08 0 0 -2.08
521 -1.04 0
Symmetric 521 0

2.08

The body forces for each node of the element were computed being equal distributed in
the elements and equal in all of them.

At)(©) 0
fi=t ’.3 [ ':w] fi = { ]
) : -375

Having all the elements the same area, the force vector is equal for all the elements.

Local force contribution 2> =0 -375 0 -375 0 -375)T
Global force vector 2

=0 -375 0 -1125 0 -375 0o -1125 0 -1125 0 -375)7T

Once having all the stifthess and forces matrix computed, the reduced system is computed.

Kgen (reduced) -10°? fgen (reduced) -107
14.58 -312 331 -1.04

-3.12 1458 -4.17 -0.0001
331 -417 14.58 -5.21
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Solving the system we can find the unknown displacements:
Node 4 2> Ui =-0.0001 m U,=-0.0011 m

Node 5 2> Ui =-0.0039 m U,=-0m



