Finite Elements

Homework 2: "Plane Elasticity"

1. Describe the strong form of the problem in the reduced domain (left half). Indicate accurately the Boundary Conditions in every edge.

The strong form of this problem consists in three parts:

- Differential equation for a steady state problem.

$$
\operatorname{div}(\sigma)+\rho \cdot b=0
$$

- Constitutive equation to relate strains with strains.

$$
\sigma=\mathbf{D} \varepsilon
$$

Where:

$$
\mathbf{D}=\left[\begin{array}{ccc}
d_{11} & d_{12} & 0 \\
d_{21} & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right]
$$

And for an isotropic elasticity in plane stress:

$$
\begin{aligned}
d_{11} & =d_{22}=\frac{E}{1-\nu^{2}} \\
d_{12} & =d_{21}=\nu d_{11} \\
d_{33} & =\frac{E}{2(1+\nu)}=G
\end{aligned}
$$

And the strains can be computed as the derivatives of the displacements

$$
\begin{array}{ll}
\varepsilon_{x}=\frac{\partial u}{\partial x} & \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} \\
\varepsilon_{y}=\frac{\partial v}{\partial y} & \gamma_{x z}=\gamma_{y z}=0
\end{array}
$$

- Boundary Conditions
- Bottom:

$$
U_{x}=U_{y}=0
$$

Nodes: 1,2, and 3

- Symmetry:

$$
U_{x}=0
$$

Nodes: (3), 5, and 6

- Top:

$$
U_{y}=\delta
$$

Node: 6
2. Describe the mesh shown in figure 2 by giving the arrays of nodal coordinates X and the connectivity matrix T. In order to simplify the computations select the local numbering of nodes such that, in every element, the node in the right angle vertex has local number equal to 1 .

Nodal coordinates

$$
X=\left(\begin{array}{cc}
0 & 0 \\
1.5 & 0 \\
3 & 0 \\
1.5 & 1.5 \\
3 & 1.5 \\
3 & 3
\end{array}\right)
$$

Row: element, Col: coordinates x, y

Connectivity Matrix

$$
\mathrm{T}=\left(\begin{array}{lll}
2 & 4 & 1 \\
4 & 2 & 5 \\
3 & 5 & 2 \\
5 & 6 & 4
\end{array}\right)
$$

Row: element, Col: nodes
3. Set up the linear system of equations corresponding to the discretization in figure 2 . How many degrees of freedom has the system to be solved

$$
\begin{aligned}
& u=N_{1} u_{1}+N_{2} u_{2}+N_{3} u_{3} \\
& v=N_{1} v_{1}+N_{2} v_{2}+N_{3} v_{3}
\end{aligned}
$$

The FE approximation can be written in a linear form as

$$
\begin{aligned}
& u=\alpha_{1}+\alpha_{2} x+\alpha_{3} y \\
& v=\alpha_{4}+\alpha_{5} x+\alpha_{6} y
\end{aligned}
$$

From the approximation for u^{h} we can obtain

$$
\begin{aligned}
& u_{1}=\alpha_{1}+\alpha_{2} x_{1}+\alpha_{3} y_{1} \\
& u_{2}=\alpha_{1}+\alpha_{2} x_{2}+\alpha_{3} y_{2} \\
& u_{3}=\alpha_{1}+\alpha_{2} x_{3}+\alpha_{3} y_{3}
\end{aligned}
$$

Solving for α_{1}, α_{2} and α_{3} and substituting gives

$$
u=\frac{1}{2 A^{(e)}}\left[\left(a_{1}+b_{1} x+c_{1} y\right) u_{1}+\left(a_{2}+b_{2} x+c_{2} y\right) u_{2}+\left(a_{3}+b_{3} x+c_{3} y\right) u_{3}\right]
$$

Where $A^{(e)}$ is the element area and

$$
a_{i}=x_{j} y_{k}-x_{k} y_{j} \quad, \quad b_{i}=y_{j}-y_{k} \quad, \quad c_{i}=x_{k}-x_{j} \quad ; \quad i, j, k=1,2,3
$$

From the linear approximation it can be deduced

$$
N_{i}=\frac{1}{2 A^{(e)}}\left(a_{i}+b_{i} x+c_{i} y\right) \quad, \quad i=1,2,3
$$

The discretization of the strain field can be computed as

$$
\begin{gathered}
\varepsilon_{x}=\frac{\partial u}{\partial x}=\frac{\partial N_{1}}{\partial x} u_{1}+\frac{\partial N_{2}}{\partial x} u_{2}+\frac{\partial N_{3}}{\partial x} u_{3} \\
\varepsilon_{y}=\frac{\partial v}{\partial y}=\frac{\partial N_{1}}{\partial y} v_{1}+\frac{\partial N_{2}}{\partial y} v_{2}+\frac{\partial N_{3}}{\partial y} v_{3} \\
\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}=\frac{\partial N_{1}}{\partial y} u_{1}+\frac{\partial N_{1}}{\partial x} v_{1}+\frac{\partial N_{2}}{\partial y} u_{2}+\frac{\partial N_{2}}{\partial x} v_{2}+\frac{\partial N_{3}}{\partial y} u_{3}+\frac{\partial N_{3}}{\partial x} v_{3}
\end{gathered}
$$

Collecting the derivative terms of the shape function in to the matrix B

$$
\mathbf{B}=\frac{1}{2 A^{(e)}}\left[\begin{array}{cccccccc}
b_{1} & 0 & \vdots & b_{2} & 0 & \vdots & b_{3} & 0 \\
0 & c_{1} & \vdots & 0 & c_{2} & \vdots & 0 & c_{3} \\
c_{1} & b_{1} & \vdots & c_{2} & b_{2} & \vdots & c_{3} & b_{3}
\end{array}\right]
$$

Discretization of the stress field

$$
\boldsymbol{\sigma}=\mathbf{D} \boldsymbol{\varepsilon}=\mathbf{D B a}^{(e)}
$$

With

$$
\mathbf{a}^{(e)}=\left\{\begin{array}{l}
\mathbf{a}_{1}^{(e)} \\
\mathbf{a}_{2}^{(e)} \\
\mathbf{a}_{3}^{(e)}
\end{array}\right\} \quad \text { with } \quad \mathbf{a}_{i}^{(e)}=\left\{\begin{array}{c}
u_{i} \\
v_{i}
\end{array}\right\}
$$

Applying the virtual work principle we find an equation which equilibrate the nodal forces ($r=$ thickness, $t=$ traction, $b=$ body force).

$$
\iint_{A^{(e)}} \mathbf{B}^{T} \boldsymbol{\sigma} t d A-\iint_{A^{(e)}} \mathbf{N}^{T} \mathbf{b} t d A-\oint_{l^{(e)}} \mathbf{N}^{T} \mathbf{t} t d s=\mathbf{q}^{(e)}
$$

Substituting the stress in terms of nodal displacements, and assuming no initial stresses, strains or surface tractions, it can be formed the following linear system of equations.

$$
\mathbf{K}^{(e)} \mathbf{a}^{(e)}-\mathbf{f}^{(e)}=\mathbf{q}^{(e)}
$$

$$
\mathbf{K}^{(e)}=\iint_{A^{(e)}} \mathbf{B}^{T} \mathbf{D} \mathbf{B} t d A
$$

$$
\mathbf{f}_{b_{i}}^{(e)}=\iint_{A^{(e)}} \mathbf{N}_{i}^{T} \mathbf{b} t d A
$$

The system has 6 nodes with 2 directions. And when applying the BC the only unknowns leftare the vertical displacement in nodes $4 \& 5$ and the horitzontal one in node 4 , with that we can reduce the system to a 3 equations.

$$
\left[\begin{array}{ccc}
K_{33}^{1}+K_{11}^{2}+K_{55}^{4} & K_{34}^{1}+K_{12}^{2}+K_{56}^{4} & K_{16}^{2}+K_{52}^{4} \\
K_{43}^{1}+K_{21}^{2}+K_{65}^{4} & K_{44}^{1}+K_{22}^{2}+K_{66}^{4} & K_{26}^{2}+K_{62}^{4} \\
K_{61}^{2}+K_{25}^{4} & K_{62}^{2}+K_{26}^{4} & K_{66}^{2}+K_{44}^{3}+K_{22}^{4}
\end{array}\right]\left[\begin{array}{c}
u_{7} \\
u_{8} \\
u_{10}
\end{array}\right]=\left[\begin{array}{c}
f_{3}^{1}+f_{1}^{2}+f_{5}^{4} \\
f_{4}^{1}+f_{2}^{2}+f_{6}^{4} \\
f_{6}^{2}+f_{4}^{3}+f_{2}^{4}
\end{array}\right]-\left[\begin{array}{c}
K_{7,12} \delta \\
K_{8,12} \delta \\
K_{10,12} \delta
\end{array}\right]
$$

4. Compute the FE approximation u^{h}. Use $E=10 G P a, v=0.2, d=0.001 \mathrm{~m}$ and $\mathrm{pg}=1000 \mathrm{~N} / \mathrm{m} 2$. (All calculations were performed with HP 50 g calculator)

Firstly, starting with the coordinates and the connectivity matrix, the local stiffness matrix were computed

Coordinates of the local nodes, column: node/ Line: element.

1.5	1.5	0	0	1.5	0	
1.5	1.5	3	$Y=$	1.5	0	1.5
3	3	1.5		0	1.5	0
3	3	1.5	1.5	3	1.5	

With the coordinates known the areas have been computed, being all the elements equals:

$$
A=1.125 \mathrm{~m}
$$

Then the B matrix for each element has to be calculated, being equal in elements 1,3 and 4

$$
\left.\begin{array}{rlrlrl}
B^{(e)} & =\frac{1}{2 A^{(e)}}\left[\begin{array}{cccccc}
b_{1} & 0 & b_{2} & 0 & b_{3} & 0 \\
0 & c_{1} & 0 & c_{2} & 0 & c_{3} \\
c_{1} & b_{1} & c_{2} & b_{2} & c_{3} & b_{3}
\end{array}\right] & b_{i}^{(e)}=y_{j}^{(e)}-y_{k}^{(e)} \\
b_{1} & =(1.5 & 0 & -1.5) & & c_{1}=x_{k}^{(e)}-x_{j}^{(e)} \\
b_{2} & =(-1.5 & 0 & 1.5) & & (-1.5 \\
c_{2} & = & (1.5 & 0
\end{array}\right)
$$

Then the matrix \mathbf{D} is computed

$$
D=\left[\begin{array}{ccc}
d_{11} & d_{12} & 0 \\
d_{21} & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right] \quad \begin{aligned}
& d_{11}=d_{22}=E /\left(1-\nu^{2}\right)=10.41 \mathrm{eg} \\
&
\end{aligned} \begin{aligned}
& d_{12}=d_{21}=v \cdot d_{11}=2.08 \mathrm{eg} \\
& d_{33}=E / 2 \cdot(1+v)=G=4.17 \mathrm{e} 9
\end{aligned}
$$

Being the next step to compute the local stiffness matrices, (in all the elements are equal).
$K^{(e)}=109 .\left[\begin{array}{cccccc}7.29 & -3.12 & -2.08 & 1.04 & -5.21 & 2.08 \\ & 7.29 & 2.08 & -5.21 & 1.04 & -2.08 \\ & & 2.08 & 0 & 0 & -2.08 \\ & & & 5.21 & -1.04 & 0 \\ & \text { Symmetric } & & 5.21 & 0 \\ & & & & & 2.08\end{array}\right]$

The body forces for each node of the element were computed being equal distributed in the elements and equal in all of them.

$$
f_{i}=\frac{(A t)^{(e)}}{3}\left[\begin{array}{c}
0 \\
-\rho g
\end{array}\right] \quad f_{i}=\quad\left[\begin{array}{c}
0 \\
-375
\end{array}\right]
$$

Having all the elements the same area, the force vector is equal for all the elements.

Local force contribution \rightarrow				$f l=(0$	-375	0	-375	0	$-375)^{T}$	
Global force vector \rightarrow										
$\mathrm{fg}=\left(\begin{array}{ll}0 & -375\end{array}\right.$	0	-1125	0	-375	0	-1125	0	-1125	0	$-375)^{T}$

Once having all the stiffness and forces matrix computed, the reduced system is computed.

Kgen (reduced) $\cdot 10^{9}$	fgen (reduced) $\cdot 10^{7}$		
14.58	-3.12	3.31	-1.04
-3.12	14.58	-4.17	-0.0001
3.31	-4.17	14.58	-5.21

Solving the system we can find the unknown displacements:

Node $4 \rightarrow$	$U_{x}=-0.0001 \mathrm{~m}$	$U_{y}=-0.0011 \mathrm{~m}$
Node $5 \rightarrow$	$U_{x}=-0.0039 \mathrm{~m}$	$U_{y}=-0 \mathrm{~m}$

