Finite Elements Homework 2

Albert Taulera
December 2015

1 Strong form and Boundary Conditions

We can express the following governing equations:

Kinematic equations
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Knowing that it is a plane stress study, we can extract the following consti-

tutive matrix:
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Which has to fulfill the following :
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And finally also requires to fullfill the balance- equilibrium equations, which
can be expressed as follows:



Balance equations
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We define the requested matrices as:
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And the extra connectivity array with the local number for each of the
elements:
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3 Linear system of equations

We know that each K¢ matrix that we compute will be a 6x6 matrix, due to
the 2 DOF of each node. The global matrix will be a 12x12 one. So, after
some work, our global stiffness matrix and force vector will have the following
structure:
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And we must solve the following system:
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4 FE aproxximation
To set up the linear system of equations for the discretization in figure 2 we

need to compute first the stiffness matrix and the force vector for each element.
Then, we must assemble the global stiffness matrix.

The stiffness matrix for an element e is computed this way:
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We already know t=1 and D. We must compute B using the following pro-
cedure:
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Where the coefficients can be computed as:

i = TjYk — TkYj
bi = y; — Yk
C; = T — Q?j

As we are working on local coordinates, we will have two different K matrices.
One for the elements 1, 3, 4 and another one for the element number 2.

Elements 1, 3, 4

ap =0 as =0 az = 1.125



by =15 by =0 by =—1.5
Cc1 = —1.5 Coy — 1.5 C3 — 0
9 1 0 00 -1 0
B = 3 0 -1 0 1 O 0
-1 1 1 0 0 -1
Element 2
a1 = 1.125 as = 0 az = 0
by =-15 be =0 bs = 1.5
Cc1 = 1.5 Cy = —1.5 C3 = 0
9 -1 0 0 0 1 0
B = 3 0 1 0 -1 0 O
1 -1 -1 0 0 1

The same fill happen for the force vectors. In our case, we will only have
force vector due to gravity (body forces), in the y- direction. It is computed as

follows:
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If we start computing:
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We have used MATLAB to compute the solution of the full " approximation.



The global matrix, complete: (1el0x scaling)

1 2 3 4 5 6
1 9.3750 -43750 -3.1250 1.2500 0 0
7 -43750 93750 31250 -6.2500 0 0
3 31250 31250 187500 43750 -3.1250 12500
4 1.2500 -6.2500 43730 187300 31250 -6.2500
5 0 0 -3.1250 31250 3.1250 0
6 0 0 1.2500 62500 0 6.2500
7 62500 1.2500 -6.2500 1.8750 0 0
3 3.1250 -3.1250 -1.8730 -3.1250 0 0
9 0 0 -6.2500 18750 0 1.2500
10 0 0 18730 -3.1250 -3,1250 0
11 0 0 0 0 0 0
12 0 0 0 0 0 0
Reduced:
1 2 3 4 5 6
1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
§ 0 0 0 0 0 1
7 0 0 0 0 0 0
3 0 0 0 0 0 0
9 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 [} 0 0 0 0
12 0 0 0 0 0 0

Global force vector:
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Reduced force vector: (after reorder due to enforced displacements)

1
(|
2 0
3 0
4 0
5 0
6 0
7| 312500000
8 -312%01125
9 0
10 -1125
11 0
12 -0.0100

Then we only need to solve the system, obtaining the following solution for
the displacements:

1
(|
2 0
3 0
4 0
5 0
& 0
7 0.0065
a -0.0226
g 0
10 -0.0191
11 0
12 -0.0100

This solution makes sense because displacements are also affected by body
forces, giving a solution with some displacements greater than the enforced one.



