Finite Elements Homework 2

Albert Taulera

December 2015

1 Strong form and Boundary Conditions

We can express the following governing equations:
Kinematic equations

$$
\begin{array}{cc}
\varepsilon_{x}=\frac{\partial u}{\partial x} & \varepsilon_{y}=\frac{\partial v}{\partial y} \\
\gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x} & \gamma_{x z}=0
\end{array}
$$

Knowing that it is a plane stress study, we can extract the following constitutive matrix:

$$
D=\left[\begin{array}{ccc}
\frac{E}{1-\nu} & \nu \frac{E}{1-\nu} & 0 \\
\nu \frac{E}{1-\nu} & \frac{E}{1-\nu} & 0 \\
0 & 0 & \frac{E}{2(1+\nu)}
\end{array}\right]
$$

Which has to fulfill the following :
Constitutive equations

$$
\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{E}{1-\nu} & \nu \frac{E}{1-\nu} & 0 \\
\nu \frac{E}{1-\nu} & \frac{E}{1-\nu} & 0 \\
0 & 0 & \frac{E}{2(1+\nu)}
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\gamma_{x y}
\end{array}\right]
$$

And finally also requires to fullfill the balance- equilibrium equations, which can be expressed as follows:

Balance equations

$$
\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & \frac{\partial}{\partial y} \\
0 & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]+\left[\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

2 Mesh, X, T, Local Numbering

We define the requested matrices as:

$$
X=\left[\begin{array}{cc}
0 & 0 \\
1.5 & 0 \\
3 & 0 \\
1.5 & 1.5 \\
3 & 1.5 \\
3 & 3
\end{array}\right] \quad T=\left[\begin{array}{cccccc}
0 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

And the extra connectivity array with the local number for each of the elements:

$$
C A=\left[\begin{array}{lll}
2 & 4 & 1 \\
4 & 2 & 5 \\
3 & 5 & 2 \\
5 & 6 & 4
\end{array}\right]
$$

3 Linear system of equations

We know that each K^{e} matrix that we compute will be a 6×6 matrix, due to the 2 DOF of each node. The global matrix will be a 12 x 12 one. So, after some work, our global stiffness matrix and force vector will have the following structure:
$K=\left[\begin{array}{cccccc}K_{11}^{(1)} & K_{12}^{(1)} & 0 & K_{13}^{(1)} & 0 & 0 \\ K_{21}^{(1)} & K_{12}^{(1)}+K_{11}^{(2)}+K_{11}^{(3)} & K_{12}^{(3)} & K_{23}^{(1)}+K_{11}^{(2)} & K_{13}^{(2)}+K_{13}^{(3)} & 0 \\ 0 & K_{21}^{(3)} & K_{22}^{(3)} & 0 & K_{23}^{(3)} & 0 \\ K_{31}^{(1)} & K_{32}^{(1)}+K_{22}^{(2)} & 0 & K_{33}^{(1)}+K_{21}^{(2)}+K_{11}^{(4)} & K_{23}^{(2)}+K_{12}^{(4)} & K_{13}^{(4)} \\ 0 & K_{32}^{(2)}+K_{31}^{(3)} & K_{32}^{(3)} & K_{31}^{(2)}+K_{21}^{(4)} & K_{33}^{(2)}+K_{33}^{(3)}+K_{22}^{(4)} & K_{23}^{(4)} \\ 0 & 0 & 0 & K_{31}^{(4)} & K_{32}^{(4)} & K_{33}^{(4)}\end{array}\right]$

$$
f=\left[\begin{array}{c}
f_{1}^{(1)}+r_{1} \\
f_{2}^{(1)}+f_{1}^{(2)}+f_{1}^{(3)}+r_{2} \\
f_{2}^{(3)}+r_{3} \\
f_{3}^{(1)}+f_{2}^{(2)}+f_{1}^{(4)} \\
f_{3}^{(2)}+f_{3}^{(3)}+f_{2}^{(4)} \\
f_{3}^{(4)}
\end{array}\right]
$$

And we must solve the following system:

$$
K a=f
$$

4 FE aproxximation

To set up the linear system of equations for the discretization in figure 2 we need to compute first the stiffness matrix and the force vector for each element. Then, we must assemble the global stiffness matrix.

The stiffness matrix for an element e is computed this way:

$$
K^{e}=\iint_{A^{(e)}}\left[\begin{array}{c}
B_{1}^{T} \\
B_{2}^{T} \\
B_{3}^{T}
\end{array}\right] D\left[\begin{array}{lll}
B_{1} & B_{2} & B_{3}
\end{array}\right] t d A
$$

We already know $\mathrm{t}=1$ and D . We must compute B using the following procedure:

$$
B_{i}=\frac{1}{2 A}\left[\begin{array}{cc}
b_{i} & 0 \\
0 & c_{i} \\
c_{i} & b_{i}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial x} & 0 \\
0 & \frac{\partial N_{i}}{\partial y} \\
\frac{\partial N_{i}}{\partial y} & \frac{\partial N_{i}}{\partial x}
\end{array}\right]
$$

Where the coefficients can be computed as:

$$
\begin{gathered}
a_{i}=x_{j} y_{k}-x_{k} y_{j} \\
b_{i}=y_{j}-y_{k} \\
c_{i}=x_{k}-x_{j}
\end{gathered}
$$

As we are working on local coordinates, we will have two different K matrices. One for the elements $1,3,4$ and another one for the element number 2.

Elements 1, 3, 4

$$
a_{1}=0 \quad a_{2}=0 \quad a_{3}=1.125
$$

$$
\begin{aligned}
b_{1} & =1.5 \\
c_{1} & =-1.5 \\
c_{2}=0 & b_{3}=-1.5 \\
B & =\frac{2}{3}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & -1 & 0 \\
0 & -1 & 0 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 & 0 & -1
\end{array}\right]
\end{aligned}
$$

Element 2

$$
\begin{aligned}
& a_{1}=1.125 \quad a_{2}=0 \quad a_{3}=0 \\
& b_{1}=-1.5 \quad b_{2}=0 \quad b_{3}=1.5 \\
& c_{1}=1.5 \quad c_{2}=-1.5 \quad c_{3}=0 \\
& B=\frac{2}{3}\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 \\
1 & -1 & -1 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

The same fill happen for the force vectors. In our case, we will only have force vector due to gravity (body forces), in the y- direction. It is computed as follows:

$$
f_{b}^{e}=\iint_{A^{(e)}} N^{T} b t d A=\frac{(A t)^{e}}{3}\left[\begin{array}{l}
b_{x} \\
b_{y}
\end{array}\right]
$$

If we start computing:
$K^{(1)}=K^{(2)}=K^{(3)}=K^{(4)}=10^{9}\left[\begin{array}{cccccc}9.375 & -4.375 & -3.125 & 1.25 & -6.25 & 3.125 \\ & 9.375 & 3.125 & -6.25 & 1.25 & -3.125 \\ & & 3.125 & 0 & 0 & -3.125 \\ & \text { symm } & & 6.25 & -1.25 & 0 \\ & & & 6.25 & 0 \\ & & & & 3.125\end{array}\right]$

$$
f^{(1)}=f^{(2)}=f^{(3)}=f^{(4)}=\left[\begin{array}{c}
0 \\
-375
\end{array}\right]
$$

We have used MATLAB to compute the solution of the full u^{h} approximation.

The global matrix, complete: (1e10x scaling)

	1	2	3	4	5	6	7	8	9	10	11	12
1	9.3750	-4.3750	-3.1250	1.2500	0	0	-6.2500	3.1250	0	0	0	0
2	-4.3750	9.3750	3.1250	-6.2500	0	0	1.2500	-3.1250	0	0	0	0
3	-3.1250	3.1250	18.7500	-4.3750	-3.1250	1.2500	-6.2500	-1.8750	-6.2500	1.8750	0	0
4	1.2500	-6.2500	-4.3750	18.7500	3.1250	-6.2500	1.8750	-3.1250	-1.8750	-3.1250	0	0
5	0	0	-3.1250	3.1250	3.1250	0	0	0	0	-3.1250	0	0
6	0	0	1.2500	-6.2500	0	6.2500	0	0	-1.2500	0	0	0
7	-6.2500	1.2500	-6.2500	1.8750	0	0	25	-8.7500	-6.2500	2.5000	-6.2500	3.1250
8	3.1250	-3.1250	-1.8750	-3.1250	0	0	-8.7500	21.8750	6.2500	-12.5000	1.2500	-3.1250
9	0	0	-6.2500	-1.8750	0	-1.2500	-6.2500	6.2500	12.5000	0	0	-3.1250
10	0	0	1.8750	-3.1250	-3.1250	0	2.5000	-12.5000	0	15.6250	-1.2500	0
11	0	0	0	0	0	0	-6.2500	1.2500	0	-1.2500	6.2500	0
12	0	0	0	0	0	0	3.1250	-3.1250	-3.1250	0	0	3.1250

Reduced:

	1	2	3	4	5	6	7	8	9	10	11	12
1	1	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	0	0	0
5	0	0	0	0	1	0	0	0	0	0	0	0
6	0	0	0	0	0	1	0	0	0	0	0	0
7	0	0	0	0	0	0	$2.5000 \mathrm{e}+10$	$-8.7500 \mathrm{e}+09$	0	$2.5000 \mathrm{e}+09$	0	0
8	0	0	0	0	0	0	$-8.7500 \mathrm{e}+09$	$2.1875 \mathrm{e}+10$	0	$-1.2500 \mathrm{e}+10$	0	0
9	0	0	0	0	0	0	0	0	1	0	0	0
10	0	0	0	0	0	0	$2.5000 \mathrm{e}+09$	$-1.2500 \mathrm{e}+10$	0	$1.5625 \mathrm{e}+10$	0	0
11	0	0	0	0	0	0	0	0	0	0	1	0
12	0	0	0	0	0	0	0	0	0	0	0	1

Global force vector:

	1
2	-375
3	0
4	-1125
5	0
6	-375
7	0
8	-1125
9	0
10	-1125
11	0
12	-375

Reduced force vector: (after reorder due to enforced displacements)

	1
2	0
3	0
4	0
5	0
6	0
7	312500000
8	-312501125
9	0
10	-1125
11	0
12	-0.0100

Then we only need to solve the system, obtaining the following solution for the displacements:

	1
2	0
3	0
4	0
5	0
6	0
7	0.0065
8	-0.0226
9	0
10	-0.0191
11	0
12	-0.0100

This solution makes sense because displacements are also affected by body forces, giving a solution with some displacements greater than the enforced one.

