Albert Taulera Campos MSc Computational Mechanics

1.

The differential equation can be rewritten as:

$$
\frac{\delta^{2} u}{\delta^{2} x}=f
$$

Because of the second order derivative, we need a new function w to be able to solve it. In our case, adding a new function and using integrals is the way to proceed to get the weak form. So:

$$
-\int_{0}^{1} w \frac{\delta^{2} u}{\delta^{2} x} d V=\int_{0}^{1} w f d V
$$

Applying the integration by parts rule to the first term of the left hand side of the equation:

$$
-\int_{0}^{1} w \frac{\delta^{2} u}{\delta^{2} x} d V=\left.w \frac{\delta u}{\delta x}\right|_{0} ^{1}+-\int_{0}^{1} w \frac{\delta w}{\delta x} \frac{\delta u}{\delta x} d V
$$

The term w is 0 in the Dirichlet boundary conditions. Therefore, the term in red becomes null and we obtain:

$$
-\int_{0}^{1} w \frac{\delta^{2} u}{\delta^{2} x} d V=-\int_{0}^{1} w \frac{\delta w}{\delta x} \frac{\delta u}{\delta x} d V
$$

Then, we obtain the weak form of the initial equation:

$$
-\int_{V} w \frac{\delta w}{\delta x} \frac{\delta u}{\delta x} d V=\int_{V} w f d V \quad \forall w
$$

The finite element approximation of u^{h} is:

$$
u^{h}=\sum_{j=1}^{n} u_{j} N_{j}(x)
$$

2.

The linear system of equations to be solved would be extracted from:
With $w_{i}=N_{i}$, Einstein notation:

$$
\begin{gathered}
-\int_{V} w \frac{\delta N_{i}}{\delta x} \frac{\delta N_{j}}{\delta x} d V=\int_{V} N_{i} f d V \\
K_{i j}=\int_{V} \frac{\delta N_{i}}{\delta x} \frac{\delta N_{j}}{\delta x} d V \\
f_{i j}=\int_{V} N_{i} f d V
\end{gathered}
$$

Then the system to solve would be:

$$
\left[\begin{array}{cccc}
K_{11} & K_{12} & \ldots & K_{1 n} \\
K_{21} & K_{22} & \ldots & K_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
K_{n 1} & K_{n 2} & \ldots & K_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n}
\end{array}\right]
$$

Where $K_{i j}$ is a band matrix and we already know the boundary conditions at the initial and final nodes.
3.

As $\mathrm{n}=3$, there are 4 nodes and 3 elements. The longitude of the bar is 1. To match the typical matrix numbering, we replace $n=4$ with $i=1,2, \ldots, n$ The u^{h} approximation for $\mathrm{n}=4$ is:

$$
\begin{gathered}
u^{h}=\sum_{j=1}^{n} u_{j} N_{j}(x)=u_{1} \\
N_{1}=\frac{x_{2}-x}{l} \quad N_{2}=\frac{x-x_{1}}{l} \\
\frac{d N_{1}}{d x}=-\frac{1}{l} \quad \frac{d N_{2}}{d x}=\frac{1}{l}
\end{gathered}
$$

For each element:

$$
\begin{gathered}
K_{i j}^{e}=\frac{1}{l}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \\
f_{i}^{1}=\left[\begin{array}{l}
\int_{0}^{1 / 3} \frac{x_{2}-x}{l} \sin (x) \\
\int_{0}^{1 / 3} \frac{x-x_{1}}{l} \sin (x)
\end{array}\right]=\left[\begin{array}{l}
0.01841590961 \\
0.03662714407
\end{array}\right]
\end{gathered}
$$

$$
\begin{gathered}
f_{i}^{2}=\left[\begin{array}{l}
\int_{1 / 3}^{2 / 3} \frac{x_{2}-x}{l} \sin (x) \\
\int_{1 / 3}^{2 / 3} \frac{x-x_{1}}{l} \sin (x)
\end{array}\right]=\left[\begin{array}{c}
0.0714316275698 \\
-0.0876380579722
\end{array}\right] \\
f_{i}^{3}=\left[\begin{array}{l}
\int_{2 / 3}^{1} \frac{x_{2}-x}{l} \sin (x) \\
\int_{2 / 3}^{1} \frac{x-x_{1}}{l} \sin (x)
\end{array}\right]=\left[\begin{array}{c}
0.116583715622 \\
0.129001239292
\end{array}\right]
\end{gathered}
$$

Calculated with $l^{e}=1 / 3$ because of the described node distribution.
To find the displacements at every node we must solve the following system of equations:

$$
3\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
u_{2} \\
u_{3} \\
3
\end{array}\right]=\left[\begin{array}{c}
0.01841590961 \\
0.0714316275698+0.03662714407 \\
-0.0876380579722+0.116583715622 \\
0.129001239292
\end{array}\right]
$$

Solving:

$$
\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
1.0272292446 \\
2.0184388986
\end{array}\right]
$$

Finally, we carry the comparison with the exact result:

$$
\begin{gathered}
\sin (x)+\left.(3-\sin 1) x\right|_{0}=0 \\
\sin (x)+\left.(3-\sin 1) x\right|_{\frac{1}{3}}=1.046704369 \\
\sin (x)+\left.(3-\sin 1) x\right|_{\frac{2}{3}}=2.057389147 \\
\sin (x)+\left.(3-\sin 1) x\right|_{1}=3
\end{gathered}
$$

Obtaining results with low relative error.

