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Consider the following differential equation  

𝑑2𝑢

𝑑𝑥2
= −𝑄      𝑖𝑛   (0,1) 

With follow boundary conditions: 

{
𝑢(0) = 0 
𝑢(1) = 𝛼

 

The Finite Element discretization is a 2-noded linear mesh given by the 

nodes xi = ih for i = 0, 1, … , n and h = 1/n. 

1. Find the weak form of the problem. Describe the FE approximation uh. 

2. Describe the linear system of equation to be solved. 

3. Compute the FE approximation uh for n = 3, Q(x) = sin x and 𝛼 = 3. 

Compute it with the exact solution u(x) = sin x + (3 – sin1)x. 

  



The governing equation of the problem is: 

𝑑2𝑢

𝑑𝑥2
= −𝑄      𝑖𝑛   (0,1) 

 

 (1.1) 

With the following Dirichlet boundaries condition: 

{
𝑢(0) = 0
𝑢(1) = 𝛼

 

The differential equation, described in strong form, can be transformed in 

an equivalent integral expression by multiplying it by an arbitrary 

weighting function, and integrating over the domain. Thus 

∫ 𝑊(𝑥) · (
𝑑2𝑢

𝑑𝑥2
+ 𝑄)𝑑𝑥 = 0

𝑙

0

 

 

 (1.2) 

Where W(x) is the weighting function and the integral statements Eq.(1.2)  

is equivalent to the differential equation Eq.(1.1). 

The unknown function u can be approximated by a linear combination of 

function as: 

𝑢 ≈ 𝑢ℎ = ∑𝑁𝑗𝑎𝑗  

𝑛

𝑗=1

 
 (1.3) 

 

Where n is the number of the nodes, Nj(x) is the shape function and aj is 

unknown parameter. This concept allows us to approximate a continuous 

function using a discrete model. The continuous function is divided into 

finite elements and the discrete model is composed of interpolation 

polynomials. The behavior of each element is described using the shape 

function between its end points. The shape function is written for each 

node of each element and has the property that its magnitude is 1 at the 

node and 0 elsewhere. The shape function is characterized for be 

continuous over the domain and satisfied the boundary condition. 

 



Substituting the approximate function uh into the integral form (1.2) we 

obtain an approximation of the integral form called weight residual 

expression.  

∫ 𝑊(𝑥) · (
𝑑2𝑢ℎ

𝑑𝑥2
+ 𝑄)𝑑𝑥 = 0

𝑙

0

 

 

 (1.4) 

Using the equation (1.3) we can rewrite the above equation in a discrete 

form, thus 

∫ 𝑊𝑖(𝑥) ·
𝑑2

𝑑𝑥2
(∑𝑁𝑗𝑎𝑗

𝑛

𝑗=0

)𝑑𝑥 + ∫ 𝑊𝑖(𝑥) · 𝑄 𝑑𝑥
𝑙

0

= 0
𝑙

0

 

 

 (1.5) 

Integrating the first term of the Eq.(1.4) by integration by parts it gives an 

equation with only first order derivatives. 

 

∫ 𝑊𝑖(𝑥) ·
𝑑2𝑢ℎ

𝑑𝑥2
𝑑𝑥 = 𝑊𝑖(𝑥) ·

𝑑𝑢ℎ

𝑑𝑥
|
𝑙

0
 

𝑙

0

−∫
𝑑𝑢ℎ

𝑑𝑥

𝑙

0

·
𝑑𝑊𝑖(𝑥)

𝑑𝑥
𝑑𝑥 

 

 (1.6) 

Using Eq.(1.6) the weak form of the problem reads 

∫
𝑑𝑢ℎ

𝑑𝑥

𝑙

0

·
𝑑𝑊𝑖(𝑥)

𝑑𝑥
𝑑𝑥 = 𝑊𝑖(𝑥) ·

𝑑𝑢ℎ

𝑑𝑥
|
𝑙

0
+ ∫ 𝑊𝑖(𝑥)

𝑙

0

𝑄 𝑑𝑥  

 

 (1.7) 

Using the Galerkin method, which is distinguished for its accuracy and 

simplicity, we choose the follow expression: 

𝑊𝑖 = 𝑁𝑖 

And we call 

𝑞 =  
𝑑𝑢𝑖

ℎ

𝑑𝑥
 

The weak form equation using Galerkin methods reads, 

∫
𝑑𝑁𝑖
𝑑𝑥

𝑙

0

·
𝑑𝑁𝑗(𝑥)

𝑑𝑥
𝑎𝑗𝑑𝑥 = 𝑁𝑖(𝑥) · q|

𝑙

0
+ ∫ 𝑁𝑖(𝑥)

𝑙

0

𝑄 𝑑𝑥  
 (1.8) 



 
And it gives us the following system of n equations and n unknowns by 

giving values from i= 0 to n. 

 

For i=0 

∫
𝑑𝑁0(𝑥)

𝑑𝑥

𝑙

0

· (
𝑑𝑁0(𝑥)

𝑑𝑥
𝑎0 +

𝑑𝑁1(𝑥)

𝑑𝑥
𝑎1 +⋯+

𝑑𝑁𝑛(𝑥)

𝑑𝑥
𝑎𝑛)𝑑𝑥

= 𝑁0(𝑥) · q|
𝑙

0
+ ∫ 𝑁0(𝑥)

𝑙

0

𝑄 𝑑𝑥  

 

  

 

For i=1 

∫
𝑑𝑁1(𝑥)

𝑑𝑥

𝑙

0

· (
𝑑𝑁0(𝑥)

𝑑𝑥
𝑎0 +

𝑑𝑁1(𝑥)

𝑑𝑥
𝑎1 +⋯+

𝑑𝑁𝑛(𝑥)

𝑑𝑥
𝑎𝑛)𝑑𝑥

= 𝑁1(𝑥) · q|
𝑙

0
+ ∫ 𝑁1(𝑥)

𝑙

0

𝑄 𝑑𝑥  

 

  

For i=n 

∫
𝑑𝑁𝑛(𝑥)

𝑑𝑥

𝑙

0

· (
𝑑𝑁0(𝑥)

𝑑𝑥
𝑎1 +

𝑑𝑁1(𝑥)

𝑑𝑥
𝑎2 +⋯+

𝑑𝑁𝑛(𝑥)

𝑑𝑥
𝑎𝑛)𝑑𝑥

= 𝑁𝑛(𝑥) · q|
𝑙

0
+ ∫ 𝑁𝑛(𝑥)

𝑙

0

𝑄𝑑𝑥  

 

  

The above equations for any value of n can be expressed in a compact 

form as: 

∫
𝑑𝑁𝑖(𝑥)

𝑑𝑥

𝑙

0

·
𝑑𝑁𝑗(𝑥)

𝑑𝑥
𝑎𝑗𝑑𝑥 = 𝑁𝑖(𝑥) · q|

𝑙

0
+ ∫ 𝑁𝑖(𝑥)

𝑙

0

𝑄𝑑𝑥  

 

 (1.10) 

Above equation can be written in matrix form as 

𝐾𝑎 = 𝑓 

 



Where: 

𝐾𝑖𝑗 = ∫
𝑑𝑁𝑖(𝑥)

𝑑𝑥

𝑙

0

·
𝑑𝑁𝑗(𝑥)

𝑑𝑥
𝑑𝑥  

 

𝑓𝑖 = 𝑁𝑖(𝑥) · q|
𝑙

0
+ ∫ 𝑁𝑖(𝑥)

𝑙

0

𝑄 𝑑𝑥  

 
 

Where K is called stiffness matrix and it is characterized to be a 

symmetrical matrix. The vector a contains the n unknowns parameters 

and f is the external forces vector. 

The dimension of the stiffness matrix is [n x n], the unknown vector a is  [n 

x 1] and the external forces vector f is [n x 1]. 

(

𝐾11 𝐾12 … 𝐾1𝑛
𝐾21
⋮
𝐾𝑛1

𝐾22 … 𝐾2𝑛
⋮ 𝐾𝑖𝑗 ⋮

𝐾𝑛2 … 𝐾𝑛𝑛

) ·

(

 
 𝑎1
𝑎2
𝑎𝑖
𝑎𝑛)

 
 
=

(

 
 
𝑓1
𝑓2
𝑓𝑖
𝑓𝑛)

 
 

 

 

 

 

 

  



Before to compute the FE approximation for n = 3, Q(x) = sin x and = 3 , 

the all domain  has to be discretized. The domain goes from 0 to 1 and it 

will be divided by the nodes xi = ih for = 0,1…,n and h=1/n. 

 So the nodes 1D x coordinates are: 

𝑖0 = 0 

𝑖1 = 1/3 

𝑖2  = 2/3   
 

𝑖3 = 1 
 
 

And the domain discretized in a global numbering is: 

 
Considering just a single element of the domain, it can be described using 

a local numeration (in red) as: 

 

  



So using the local numeration for each element of the whole domain, for 

each value of i, we obtain the following equations: 

  

For i = 0 

∫
𝑑𝑁0

(1)

𝑑𝑥

𝑙/3

0
· [
𝑑𝑁0

(1)

𝑑𝑥
· 𝑎0+ 

𝑑𝑁1
(1)

𝑑𝑥
· 𝑎1] · 𝑑𝑥 = 𝑁0

(1) · q|
𝑙/3
0
+∫

𝑑𝑁0
(1)

𝑑𝑥

𝑙/3

0
𝑄 · 𝑑𝑥 

For i = 1 

∫
𝑑𝑁1

(1)

𝑑𝑥

𝑙/3

0
· [
𝑑𝑁0

(1)

𝑑𝑥
· 𝑎0+ 

𝑑𝑁1
(1)

𝑑𝑥
· 𝑎1] · 𝑑𝑥 +  ∫

𝑑𝑁0
(2)

𝑑𝑥

2𝑙/3

𝑙/3

· [
𝑑𝑁0

(2)

𝑑𝑥
· 𝑎0+ 

𝑑𝑁1
(2)

𝑑𝑥
· 𝑎1] · 𝑑𝑥

= 𝑁1
(1) · q|

𝑙/3
0
+𝑁0

(2) · q|
2𝑙/3
𝑙/3

+∫
𝑑𝑁1

(1)

𝑑𝑥

𝑙/3

0
𝑄 · 𝑑𝑥

+ ∫
𝑑𝑁0

(2)

𝑑𝑥

2𝑙/3

𝑙/3
𝑄 · 𝑑𝑥 

For i = 2 

∫
𝑑𝑁1

(2)

𝑑𝑥

2𝑙/3

𝑙/3
· [
𝑑𝑁0

(2)

𝑑𝑥
· 𝑎1+ 

𝑑𝑁1
(2)

𝑑𝑥
· 𝑎2] · 𝑑𝑥+∫

𝑑𝑁0
(3)

𝑑𝑥

𝑙

2𝑙/3

· [
𝑑𝑁0

(3)

𝑑𝑥
· 𝑎1+ 

𝑑𝑁1
(3)

𝑑𝑥
· 𝑎2] · 𝑑𝑥

= 𝑁1
(2) · q|

2𝑙/3
𝑙/3

+𝑁0
(3) · q|

𝑙
2𝑙/3

+∫
𝑑𝑁1

(2)

𝑑𝑥

2𝑙/3

𝑙/3
𝑄 · 𝑑𝑥

+ ∫
𝑑𝑁0

(3)

𝑑𝑥

𝑙

2𝑙/3
· 𝑄𝑑𝑥 

For i = 3 

∫
𝑑𝑁1

(3)

𝑑𝑥

𝑙/3

2𝑙/3
· [
𝑑𝑁0

(3)

𝑑𝑥
· 𝑎2+ 

𝑑𝑁1
(3)

𝑑𝑥
· 𝑎3] · 𝑑𝑥 = 𝑁1

(3) · q|
𝑙

2𝑙/3
+∫

𝑑𝑁1
(3)

𝑑𝑥

𝑙

2𝑙/3
𝑄 · 𝑑𝑥 

  



The expression can be written in matrix form by assembling each matrix 

element K(e). 

The general form to get the element of the K matrix and f in in local 

numbering are: 

𝐾𝑖𝑗
e = ∫

𝑑𝑁𝑖
𝑒

𝑑𝑥

(2)

(1)

·
𝑑𝑁𝑗

e

𝑑𝑥
𝑑𝑥         𝑓𝑖

e = ∫ 𝑁𝑖
e(𝑥)

(2)

(1)

𝑄 𝑑𝑥 

The shape function takes the value 1 at node i and the value 0 at the other 

node. 

Knowing the value of: 

𝑑𝑁0 
𝑒(𝑥)

𝑑𝑥
=  −

1

𝑙𝑒
 

𝑑𝑁1
𝑒(𝑥)

𝑑𝑥
=  
1

𝑙𝑒
 

Where le is the length of each element. 

 For each element the following matrixes are obtained: 

𝐾0 = (
3 −3
−3 3

) 

𝐾1 = (
3 −3
−3 3

) 

𝐾2 = (
3 −3
−3 3

) 

𝐾3 = (
3 −3
−3 3

) 

 

 

 

 

 



By assembling the all matrixes the global stiffness matrix is: 

𝐾 = 3 · (

1 −1 0    0
−1
0
0

2 −1 0
−1 2 −1
0 −1 1

) 

The equations of each shape function are: 

𝑁0
1(𝑥) =  −3𝑥 + 1 

𝑁1
1(𝑥) =  3𝑥 

𝑁0
2(𝑥) =  −3𝑥 + 2 

𝑁1
2(𝑥) =  3𝑥 − 1 

𝑁0
3(𝑥) =  −3𝑥 + 3 

𝑁1
3(𝑥) =  3𝑥 − 2 

 

 

Taking Q(x) = sin(x),  fi  is obtained as: 

𝑓0 = ∫ (−3x + 1) · sin (x)
(1/3)

(0)

 𝑑𝑥 

𝑓1 = ∫ (3x) · sin(x)𝑑𝑥 +
(1/3)

(0)

∫ (−3x + 2) · sin(x)𝑑𝑥
(2/3)

(1/3)

 

𝑓2 = ∫ (3x − 1) · sin(x)𝑑𝑥 +
(2/3)

(1/3)

∫ (−3x + 3) · sin(x)𝑑𝑥
(1)

(2/3)

 

𝑓3 = ∫ (3x − 2) · sin (x)
(1)

(2/3)

 𝑑𝑥 

 

 

 

 



By integrating by part the above integrals, the system of equation reads: 

3 · (

1 −1 0    0
−1
0
0

2 −1 0
−1 2 −1
0 −1 1

) ·

(

 
 𝑢0
𝑢1
𝑢2
𝑢3)

 
 
=

(

 
 
−𝑞0 + 𝑓

0

𝑓1

𝑓2

𝑓3 + 𝑞𝑙 )

 
 

 

Using the boundary condition we can simplify the matrix considering that 

the values of u0 and u3 as: 

3 · (
2 −1
−1 2

) (
𝑢1
𝑢2
) = (

6sin (
1
3)
− 3 sin (

2
3)

6 sin (
2
3)
− 3 sin (

1
3)
− 3 sin(1) + 3 · 𝛼

) 

The results by solving the system of equations are: 

𝑢1 = 1.0467 

𝑢2 = 2.0574 

With these values we obtain: 

𝑞0 = 3.1585 

𝑞𝑙 =  1.7164 

 

Where q0 and ql  are the reaction fluxes. 

 

 

 

 

 

  



The picture shows  the comparison between the analitic solution and the 

approximation solution, where the analytical solution is  

 

The table shows the values of the analytical function and the approximate 

function at each node. 

 x=0 x=1/3 x=2/3 x=1 

u(x) 0 1.0467 2.0574 3 
u^h(x) 0 1.0467 2.0573 3 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

 

 

Approximate solution

u = sin(x)+(3-sin(1))·x


