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Consider the following differential equation 

−𝑢′′ =  𝑓 𝑖𝑛  0,1  

with the boundary conditions 𝑢 0 = 0 and 𝑢 1 = 𝛼 

      The Finite Element discretization is a 2-noded linear mesh given by the nodes 𝑥𝑖 = 𝑖ℎ for 

𝑖 = 0,1, … , 𝑛 and ℎ = 1 𝑛 . 

1. Find the weak form of the problem. Describe the FE approximation 𝑢ℎ . 

2. Describe the linear system of equations to be solved 

3. Compute the FE approximation 𝑢ℎ  for 𝑛 = 3, 𝑓 𝑥 = sin𝑥 and 𝛼 = 3. Compare it with 

the exact solution, 𝑢 𝑥 = sin𝑥 +   3 − sin 1 𝑥. 

 

1. Being 𝐴 𝑢  the differential govern equation and 𝐵 𝑢  the equation containing the 

boundary conditions: 

𝐴 𝑢 =
𝑑2𝑢

𝑑𝑥2
+ 𝑓 = 0    𝑖𝑛 𝜔 

𝐵 𝑢 =  
𝑢 0 = 0   𝑖𝑛 Γ𝑢
𝑢 1 = 𝛼    𝑖𝑛 Γ𝑢

  

We can multiply the expressions above for an arbitrary weighting function w(x) and integrate 

over each domain 

 𝑤 𝑥 𝐴 𝑢 𝑑Ω
Ω

+  𝑤  𝑥 𝐵 𝑢 𝑑Γ
Γ

 

Taking into consideration that there are no Neuman boundary conditions defined (Γ𝑞 = ∅) and 

that the Dirichlet conditions are imposed when solving the resulting system of equations, the 

second integral becomes 0. Developing: 

 𝑤  
𝑑2𝑢

𝑑𝑥2
+ 𝑓 𝑑Ω

Ω

 =  𝑤 
𝑑2𝑢

𝑑𝑥2
𝑑Ω

Ω

+  𝑤 𝑓𝑑Ω
Ω
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Integrating by parts the first term; ( 𝑢𝑑𝑣
𝑙

0
=  𝑢𝑣 0

𝑙 −  𝑣𝑑𝑢
𝑙

0
) being 𝑢 = 𝑤 and 𝑣 = 𝑑𝑢/𝑑𝑥 

− 
𝑑𝑤

𝑑𝑥
 
𝑑𝑢

𝑑𝑥
𝑑Ω

Ω

+   𝑤 
𝑑𝑢

𝑑𝑥
𝑑Γ

Γ

+  𝑤 𝑓𝑑Ω
Ω

 

− 
𝑑𝑤

𝑑𝑥
 
𝑑𝑢

𝑑𝑥
𝑑Ω

Ω

+   𝑤 
𝑑𝑢

𝑑𝑥
 

0

1

+  𝑤 𝑓𝑑Ω
Ω

 

By doing this we got rid of the second derivatives while keeping an expression (called weak 

form) that has the same solutions as the original differential equation. 

The finite element method approximation to be used is of the form: 

𝑢 ≅ 𝑢ℎ =  𝑁𝑖(𝑥)𝑎𝑖

𝑛

𝑖=1

 

Where 𝑁𝑖(𝑥) are the interpolation functions and 𝑎𝑖  the solution on the nodes. The 

interpolation functions are defined locally inside the elements as: 

𝑁1
ⓔ 𝑥 =

𝑥2
ⓔ − 𝑥

𝑙ⓔ   
 

𝑁2
ⓔ 𝑥 =

𝑥 − 𝑥1
ⓔ

𝑙ⓔ   
 

Putting this back in the weak form 

− 
𝑑𝑤

𝑑𝑥
 
𝑑𝑢ℎ

𝑑𝑥
𝑑Ω

Ω

+   𝑤 
𝑑𝑢ℎ

𝑑𝑥
𝑑Γ

Γ

+  𝑤 𝑓𝑑Ω
Ω

 

2. Substituting the interpolation functions in the weak form: 

− 
𝑑𝑤𝑖

𝑑𝑥
 
𝑑𝑁𝑗

𝑑𝑥
𝑎𝑗𝑑Ω

Ω

+   𝑤𝑖  𝑞𝑖 0
1 +  𝑤𝑖  𝑓𝑖𝑑Ω

Ω

 

As 𝑎𝑗  is an independent scalar it can be put out of integral. Then rearranging we obtain 

 
𝑑𝑤𝑖

𝑑𝑥
 
𝑑𝑁𝑗

𝑑𝑥
𝑑Ω

Ω

 𝑎𝑗 =   𝑤𝑖  𝑞 0
1 +  𝑤𝑖  𝑓𝑑Ω

Ω

 

We can see that now it takes the form of a linear system in matrix form (𝑲𝒂 = 𝒇), where 

𝐾𝑖𝑗 =  
𝑑𝑤𝑖

𝑑𝑥
 
𝑑𝑁𝑗

𝑑𝑥
𝑑Ω

Ω

 

𝑓𝑖 =  𝑤𝑖  𝑞 0
1 +  𝑤𝑖  𝑓𝑑Ω

Ω

 

We can also see that if we take the weighting function the same as the interpolation function, 

the stiffness matrix becomes symmetric. This is called Galerkin method and the stiffness matrix 

and nodal force vector are now: 

𝐾𝑖𝑗 =  
𝑑𝑁𝑖

𝑑𝑥
 
𝑑𝑁𝑗

𝑑𝑥
𝑑Ω

Ω

 

 

𝑓𝑖 =  𝑁𝑖  𝑞 0
1 +  𝑁𝑖  𝑓𝑑Ω

Ω
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3. For solving the problem we need to obtain the global stiffness matrix and vector of nodal 

forces. It is necessary then to map the relation between the global and local interpolating 

functions: 

 

Interval Global Local Interval Global Local 

𝑥 ∈ [0, 1/3] 𝑁1 𝑁1
① 𝑥 ∈ [1/3, 2/3] 𝑁3 𝑁2

② 
𝑥 ∉ [0, 1/3] 𝑁1 0 𝑥 ∈ [2/3, 1) 𝑁3 𝑁1

③ 
𝑥 ∈ [0, 1/3) 𝑁2 𝑁2

① 𝑥 ∉ [1/3, 1] 𝑁3 0 

𝑥 ∈ [1/3, 2/3] 𝑁2 𝑁1
② 𝑥 ∈ [2/3, 1] 𝑁4 𝑁2

③ 
𝑥 ∉ [0, 2/3] 𝑁2 0 𝑥 ∉ [2/3, 1] 𝑁4 0 

 

 

For computing the global stiffness matrix, we need to compute the local ones. In the particular 

case of this problem we can see that all the local stiffness matrix have the same expression, 

which is: 

 
𝑑𝑁𝑖

𝑑𝑥
 
𝑑𝑁𝑗

𝑑𝑥
𝑑Ω

𝑙ⓔ 

0

 

 
𝑑𝑁𝑖

𝑑𝑥
 
𝑑𝑁𝑗

𝑑𝑥
𝑑Ω

𝑙ⓔ 

0

 

𝑑𝑁1

𝑑𝑥
= −

1

𝑙ⓔ 
 ;   

𝑑𝑁2

𝑑𝑥
=

1

𝑙ⓔ 
 

𝑙① = 𝑙② = 𝑙③  

 
𝐾11 𝑘12

𝐾21 𝑘22
 =  

3 −3
−3 3

  

The nodal forces vector is computed directly on global reference taking into account the table 

for the splitting of the integrals. 

The general form of the vector is 

𝑓𝑖 =  𝑁𝑖  𝑞 0
1 +  𝑁𝑖  𝑓𝑑Ω

Ω

 

Evaluating for all the nodes: 

𝑓1 = 𝑞1 +  𝑁1 𝑓𝑑Ω
Ω

= 𝑞1 +  
1 3 − 𝑥

1/3
sin(𝑥)  𝑑Ω

1/3

0

= 𝑞1 + 0.018416 

𝑓2 =  𝑁2 𝑓𝑑Ω
Ω

=  
𝑥 − 0

1/3
sin(𝑥)  𝑑Ω

1/3

0

+  
2 3 − 𝑥

1/3
sin(𝑥)  𝑑Ω

2/3

1/3

= 0.108059 

𝑓3 =  𝑁3 𝑓𝑑Ω
Ω

=  
𝑥 − 1/3

1/3
sin(𝑥)  𝑑Ω

2/3

1/3

+  
1 − 𝑥

1/3
sin(𝑥)  𝑑Ω

1

2/3

= 0.204218 

𝑓4 = 𝑞4 +  𝑁4 𝑓𝑑Ω
Ω

= 𝑞4 +  
𝑥 − 2 3 

1/3
sin(𝑥)  𝑑Ω

1

2/3

= 𝑞4 + 0.01290 

Assembling the stiffness matrix the system to solve in matrix form is: 

 

3 −3
−3 3 + 3

0 0
−3 0

0 −3
0 0

3 + 3 −3
−3 3

  

𝑢1

𝑢2
𝑢3

𝑢4

 =  

𝑞1 + 0.018416
0.108059
0.20421

𝑞4 + 0.1290
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Substituting the Dirichlet boundary conditions (𝑢1 = 0 , 𝑢4 = 𝛼 = 3), we can solve the 

reduced system 

 
6 −3
−3 6

  
𝑢2

𝑢3
 =  

0.108059
0.20421 + 9

 , 

obtaining 

𝑢2 = 1.0467;   𝑢3 = 2.05739  

The reactions flux can be computed a posteriori once the solution on the nodes is known. 

𝑞1 = −3.1585;  𝑞4 = 2.6988  

 

Plotting the analytical solution 𝑢 𝑥 = sin 𝑥 +  3 − sin 1 𝑥 and the approximate fem solution 

𝑢ℎ(𝑥) =  𝑁𝑖(𝑥)𝑎𝑖
𝑛
𝑖=1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we can see that for the solved case using 3 linear elements the approximate solution obtained 

seems practically the exact one given by the analytical expression, thus we can say that the 

solution is accurate. 

 

 

 

 


