Consider the following differential equation

$$
\left.-\frac{d^{2} u}{d x^{2}}=\mathrm{f} \text { in }\right] 0,1[
$$

with the boundary conditions:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=\alpha
\end{array}\right.
$$

The Finite Element discretization is a 2-noded linear mesh given by the nodes $x_{i}=$ ih for $i=0,1, \ldots, n$ and $h=1 / n$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.
2. Describe the linear system of equation to be solved.
3. Compute the FE approximation u^{h} for $n=3, Q(x)=\sin x$ and $\alpha=3$. Compute it with the exact solution $u(x)=\sin x+(3-\sin 1) x$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.

So, we have:

- The governing differential equation:

$$
\begin{equation*}
\left.-\frac{d^{2} u}{d x^{2}}=\mathrm{f} \quad \text { in }\right] 0,1[\tag{1}
\end{equation*}
$$

- And the boundary conditions:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=\alpha
\end{array}\right.
$$

in the boundary Γ of Ω.

To find the weak form of this problem we proceed as follows:
We multiply (1) by an arbitrary $\mathrm{w}(\mathrm{x}$) weighting function

$$
-w(x) \frac{d^{2} u}{d x^{2}}=\mathrm{f} w(\mathrm{x})
$$

Such that $w(x)$ is 0 in Γ
and then we integrate over the domain:

$$
-\int_{0}^{1} w(x) \frac{d^{2} u}{d x^{2}} \mathrm{dx}=\int_{0}^{1} f \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

Remembering the integration by parts formula:

$$
\int_{a}^{b} f d g+\int_{a}^{b} g d f=[f g]_{a}^{b}
$$

In our case $a=0, b=1, g=w$ and

$$
d f=\frac{d^{2} u}{d x^{2}}
$$

And

$$
\int_{0}^{1} w(x) \frac{d^{2} u}{d x^{2}} \mathrm{dx}=\left[\frac{d u}{d x} w(x)\right]_{0}^{1}-\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x
$$

$$
\left[\frac{d u}{d x} w(x)\right]_{0}^{1}=0
$$

because we have defined $w(x)$ such that $w(x)=0$ in Γ, and

$$
-\int_{0}^{1} w(x) \frac{d^{2} u}{d x^{2}} \mathrm{dx}=\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x
$$

So substituting:

$$
\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x=\int_{0}^{1} f \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

We have found the weak form of the problem.

In order to approximate the algebraic equation by a numeric one, we express u as a sum of n products of linear combination of products of a_{j} (unknown) and $N_{j}(x)$ (a shape function such each of them is 1 when $\mathrm{j}=\mathrm{n}$ and 0 in any $\mathrm{j} \neq \mathrm{n}$)

So, we would have:

$$
\begin{gathered}
u \approx u^{h}=\sum_{j=1}^{n} N_{j} a_{j}=\sum_{j=1}^{n} a_{j} \operatorname{Sin}\left(\frac{x_{j} \pi}{2 l}\right) \\
N_{j}=\operatorname{Sin}\left(\frac{x_{j} \pi}{l}\right)
\end{gathered}
$$

And now we just substitute this approximation $u \approx u^{h}$ in (2):

$$
\int_{0}^{1} \frac{d}{d x}\left(\sum_{j=1}^{n} N_{j} a_{j}\right) \frac{d w}{d x} d x=\int_{0}^{1} f \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

Next step is to choose a suitable weight function w. We finally choose

$$
w=W_{i}(\mathrm{x})=N_{i}(x)\left\{\begin{array}{l}
1 \text { when } i=n \\
0 \text { when } i \neq n
\end{array}\right.
$$

known as Galerkin method. So now:

$$
\begin{gathered}
\int_{0}^{1} \frac{d}{d x}\left(\sum_{j=1}^{n} N_{j} a_{j}\right) \frac{d\left(N_{i}(x)\right)}{d x} d x=\int_{0}^{1} f N_{i}(x) \mathrm{dx} \\
\int_{0}^{1} \frac{d}{d x}\left(\sum_{j=1}^{n} N_{j} a_{j}\right) \frac{d}{d x}\left(N_{1}(x)\right) d x=\int_{0}^{1} f N_{1}(x) \mathrm{dx} \\
\int_{0}^{1} \frac{d}{d x}\left(N_{1} a_{1}+N_{2} a_{2}+\cdots+N_{n} a_{n}\right) \frac{d}{d x}\left(N_{1}(x)\right) d x=\int_{0}^{1} f N_{1}(x) \mathrm{dx}
\end{gathered}
$$

And this last equation has the following form:

$K a=f$

$\mathrm{K}=\left(\begin{array}{ccc}\int_{0}^{1} \frac{d}{d x}\left(N_{1} a_{1}\right) \frac{d\left(N_{1}(x)\right)}{d x} d x & \cdots & \int_{0}^{1} \frac{d}{d x}\left(N_{n} a_{n}\right) \frac{d\left(N_{1}(x)\right)}{d x} d x \\ \vdots & \ddots & \vdots \\ \int_{0}^{1} \frac{d}{d x}\left(N_{1} a_{n}\right) \frac{d\left(N_{n}(x)\right)}{d x} d x & \cdots & \int_{0}^{1} \frac{d}{d x}\left(N_{n} a_{n}\right) \frac{d\left(N_{n}(x)\right)}{d x} d x\end{array}\right)$

But we will use $K i j=\left(\frac{j \pi}{1}\right)^{2} \int_{0}^{l} W_{i(x)} \cdot \operatorname{Sin}\left(\frac{\mathrm{j} \pi \mathrm{x}}{1}\right) d x$

$$
f_{i}=\int_{0}^{l} f W_{i}(x) d x
$$

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
\int_{0}^{1} f W_{1}(x) d x \\
\vdots \\
\int_{0}^{1} f W_{n}(x) d x
\end{array}\right)
$$

In our problem we have a 2 -noded linear mesh with n nodes x_{i}, such that $\mathrm{x}_{\mathrm{i}}=$ ih for $\mathrm{i}=0,1, \ldots, \mathrm{n}$ and $\mathrm{h}=1 / \mathrm{n}$

If we are asked for this particular case: u^{h} for $n=3, f(x)=\sin x$ and $\alpha=3$, then:

Exact solution

$$
\begin{array}{ll}
X_{0}=0 & u(0)=0 \\
X_{1}=1 \frac{1}{3}=\frac{1}{3} & u(1 / 3)=1 \\
X_{2}=2 \frac{1}{3}=\frac{2}{3} & u(2 / 3)=2 \\
X_{3}=3 \frac{1}{3}=1 & u(1)=3
\end{array}
$$

With the boundary conditions:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=3
\end{array}\right.
$$

So, $u^{h}=\sum_{j=1}^{n} N_{j} a_{j}$

And we have choosen N_{j} :

$$
\begin{aligned}
& N_{j}=\operatorname{Sin}\left(\frac{x_{j} \pi}{l}\right) \\
& 0<x<1, \text { with } l=1
\end{aligned}
$$

in order to satisfy

$$
w=W_{i}(\mathrm{x})=N_{i}(x)\left\{\begin{array}{l}
1 \text { when } i=n \\
0 \text { when } i \neq n
\end{array}\right.
$$

Note we will use:

$$
\int \operatorname{Sin}(a x) \operatorname{Sin}(b x) d x=-\frac{\sin (a+b) x}{2(a+b)}+\frac{\sin (a-b) x}{2(a-b)}+C
$$

And $\mathrm{l}=1$,

$$
\begin{aligned}
& \quad f_{1}=\int_{0}^{1 / 3} \sin x \sin (\pi x) d x==-\frac{\sin (1+\pi)\left(\frac{1}{3}\right)}{2(1+\pi)}+\frac{\sin (1-\pi)\left(\frac{1}{3}\right)}{2(1-\pi)}+\frac{\sin 0}{2(a+b)}- \\
& \frac{\sin (0)}{2(a-b)}=-0.118+0.1529 \approx 0,2714
\end{aligned}
$$

$$
K_{11}=\pi^{2} \int_{0}^{1} W_{1}(\mathrm{x}) \sin (\pi x) d x=\pi^{2} \int_{0}^{1} \sin (\pi x) \sin (\pi x) d x=\frac{\pi^{2}}{2} \approx 4.9348
$$

$$
f_{2}=\int_{0}^{1 / 3} \sin x \sin (2 \pi x) d x==-\frac{\operatorname{Sin}(1+2 \pi)\left(\frac{1}{3}\right)}{2(1+2 \pi)}+\frac{\operatorname{Sin}(1-2 \pi)\left(\frac{1}{3}\right)}{2(1-2 \pi)}=\quad-0,045+
$$

$$
0.1667 \approx 0,1217
$$

$$
f_{3}=\int_{0}^{1 / 3} \sin x \sin (3 \pi x) d x==-\frac{\operatorname{Sin}(1+3)\left(\frac{1}{3}\right)}{2(1+3 \pi)}+\frac{\operatorname{Sin}(1-3 \pi)\left(\frac{1}{3}\right)}{2(1-3 \pi)}=\quad-0.6667+
$$ $0.0194 \approx-0,6473$

$$
\begin{aligned}
& K_{12}=4 \pi^{2} \int_{0}^{1} W_{1}(x) \operatorname{Sin}(2 \pi x) d x=4 \pi^{2} \int_{0}^{1} \operatorname{Sin}(\pi x) \operatorname{Sin}(2 \pi x) d x \\
& =4 \pi^{2}\left(-\frac{\operatorname{Sin}(3 \pi)}{(6 \pi)}+\frac{\operatorname{Sin}(-\pi)}{-2 \pi}\right)=0 \\
& K_{21}=\pi^{2} \int_{0}^{1} W_{2}(\mathrm{x}) \operatorname{Sin}(\pi x) d x=\pi^{2} \int_{0}^{1} \operatorname{Sin}(2 \pi x) \operatorname{Sin}(\pi x) d x=0 \\
& K_{22}=4 \pi^{2} \int_{0}^{1} W_{2}(\mathrm{x}) \operatorname{Sin}(2 \pi x) d x=4 \pi^{2} \int_{0}^{1} \operatorname{Sin}(2 \pi x) \operatorname{Sin}(2 \pi x) d x=2 \pi^{2} \\
& \approx 19.7392 \\
& K_{33}=9 \pi^{2} \int_{0}^{1} W_{3}(\mathrm{x}) \operatorname{Sin}(3 \pi x) d x=9 \pi^{2} \int_{0}^{1} \operatorname{Sin}(3 \pi x) \operatorname{Sin}(3 \pi x) d x=\frac{9 \pi^{2}}{2}=44.4132 \\
& K_{31}=0 \\
& K_{13}=0 \\
& K_{32}=0 \\
& K_{23}=0 \\
& \left(\begin{array}{ccc}
4.9348 & 0 & 0 \\
0 & 19.7392 & 0 \\
0 & 0 & 44.4132
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
0,2714 \\
0,1217 \\
-0,6473
\end{array}\right) \\
& a_{1} \approx 0.0550 \\
& a_{2} \approx 0.0062
\end{aligned}
$$

```
a3\approx-0.0146
```



```
U(x)=0.055 Sin(\pix)+0.0062Sin(2\pix) -0.0146 Sin(3\pix)
\(U(0)=0\)
\(U(1 / 3)=0.0476+0.0054-0=0.053\)
\(U(2 / 3)=\)
\(U(1)=0\)
```

These are the numeric solutions. And they should be close to those exact solutions written in page 5 .

So I have some mistakes...

