Consider the following differential equation

$$
\left.-\frac{d^{2} u}{d x^{2}}=\mathrm{f} \text { in }\right] 0,1[
$$

with the boundary conditions:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=\alpha
\end{array}\right.
$$

The Finite Element discretization is a 2-noded linear mesh given by the nodes $x_{i}=$ ih for $i=0,1, \ldots, n$ and $h=1 / n$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.
2. Describe the linear system of equation to be solved.
3. Compute the FE approximation u^{h} for $n=3, Q(x)=\sin x$ and $\alpha=3$. Compute it with the exact solution $u(x)=\sin x+(3-\sin 1) x$.

1. Find the weak form of the problem. Describe the FE approximation u^{h}.

So, we have:

- The governing differential equation:

$$
\begin{equation*}
\left.-\frac{d^{2} u}{d x^{2}}=\mathrm{f} \quad \text { in }\right] 0,1[\tag{1}
\end{equation*}
$$

- And the boundary conditions:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=\alpha
\end{array}\right.
$$

in the boundary Γ of Ω.

To find the weak form of this problem we proceed as follows:
We multiply (1) by an arbitrary $\mathrm{w}(\mathrm{x}$) weighting function

$$
-w(x) \frac{d^{2} u}{d x^{2}}=\mathrm{f} w(\mathrm{x})
$$

Such that $w(x)$ is 0 in Γ
and then we integrate over the domain:

$$
-\int_{0}^{1} w(x) \frac{d^{2} u}{d x^{2}} \mathrm{dx}=\int_{0}^{1} f \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

Remembering the integration by parts formula:

$$
\int_{a}^{b} f d g+\int_{a}^{b} g d f=[f g]_{a}^{b}
$$

In our case $a=0, b=1, g=w$ and

$$
d f=\frac{d^{2} u}{d x^{2}}
$$

And

$$
\int_{0}^{1} w(x) \frac{d^{2} u}{d x^{2}} \mathrm{dx}=\left[\frac{d u}{d x} w(x)\right]_{0}^{1}-\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x
$$

$$
\left[\frac{d u}{d x} w(x)\right]_{0}^{1}=0
$$

because we have defined $w(x)$ such that $w(x)=0$ in Γ, and

$$
-\int_{0}^{1} w(x) \frac{d^{2} u}{d x^{2}} \mathrm{dx}=\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x
$$

So substituting:

$$
\int_{0}^{1} \frac{d u}{d x} \frac{d w}{d x} d x=\int_{0}^{1} f \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

We have found the weak form of the problem.

In order to approximate the algebraic equation by a numeric one, we express u as a sum of n products of linear combination of products of a_{j} (unknown) and $N_{j}(x)$ (a shape function such each of them is 1 when $\mathrm{j}=\mathrm{n}$ and 0 in any $\mathrm{j} \neq \mathrm{n}$)

So, we would have:

$$
\begin{gathered}
u \approx u^{h}=\sum_{j=1}^{n} N_{j} a_{j}=\sum_{j=1}^{n} a_{j} \operatorname{Sin}\left(\frac{x_{j} \pi}{2 l}\right) \\
N_{j}=\operatorname{Sin}\left(\frac{x_{j} \pi}{l}\right)
\end{gathered}
$$

And now we just substitute this approximation $u \approx u^{h}$ in (2):

$$
\int_{0}^{1} \frac{d}{d x}\left(\sum_{j=1}^{n} N_{j} a_{j}\right) \frac{d w}{d x} d x=\int_{0}^{1} f \mathrm{w}(\mathrm{x}) \mathrm{dx}
$$

Next step is to choose a suitable weight function w. We finally choose

$$
w=W_{i}(\mathrm{x})=N_{i}(x)\left\{\begin{array}{l}
1 \text { when } i=n \\
0 \text { when } i \neq n
\end{array}\right.
$$

known as Galerkin method. So now:

$$
\begin{gathered}
\int_{0}^{1} \frac{d}{d x}\left(\sum_{j=1}^{n} N_{j} a_{j}\right) \frac{d\left(N_{i}(x)\right)}{d x} d x=\int_{0}^{1} f N_{i}(x) \mathrm{dx} \\
\int_{0}^{1} \frac{d}{d x}\left(\sum_{j=1}^{n} N_{j} a_{j}\right) \frac{d}{d x}\left(N_{1}(x)\right) d x=\int_{0}^{1} f N_{1}(x) \mathrm{dx} \\
\int_{0}^{1} \frac{d}{d x}\left(N_{1} a_{1}+N_{2} a_{2}+\cdots+N_{n} a_{n}\right) \frac{d}{d x}\left(N_{1}(x)\right) d x=\int_{0}^{1} f N_{1}(x) \mathrm{dx}
\end{gathered}
$$

And this last equation has the following form:

$K a=f$

$\mathrm{K}=\left(\begin{array}{ccc}\int_{0}^{1} \frac{d}{d x}\left(N_{1} a_{1}\right) \frac{d\left(N_{1}(x)\right)}{d x} d x & \cdots & \int_{0}^{1} \frac{d}{d x}\left(N_{n} a_{n}\right) \frac{d\left(N_{1}(x)\right)}{d x} d x \\ \vdots & \ddots & \vdots \\ \int_{0}^{1} \frac{d}{d x}\left(N_{1} a_{n}\right) \frac{d\left(N_{n}(x)\right)}{d x} d x & \cdots & \int_{0}^{1} \frac{d}{d x}\left(N_{n} a_{n}\right) \frac{d\left(N_{n}(x)\right)}{d x} d x\end{array}\right)$

$$
f_{i}=\int_{0}^{l} f W_{i}(x) d x
$$

$$
\left(\begin{array}{c}
f_{1} \\
\vdots \\
f_{n}
\end{array}\right)=\left(\begin{array}{c}
\int_{0}^{1} f W_{1}(x) d x \\
\vdots \\
\int_{0}^{1} f W_{n}(x) d x
\end{array}\right)
$$

In our problem we have a 2-noded linear mesh with n nodes x_{i}, such that $x_{i}=$ ih for $i=0,1, \ldots, n$ and $h=1 / n$

If we are asked for this particular case: u^{h} for $n=3, f(x)=\sin x$ and $\alpha=3$, then:

Exact solution (algebraic solution)

$$
\begin{array}{ll}
X_{0}=0 & u(0)=0 \\
X_{1}=1 \frac{1}{3}=\frac{1}{3} & u(1 / 3)=1 \\
X_{2}=2 \frac{1}{3}=\frac{2}{3} & u(2 / 3)=2 \\
X_{3}=3 \frac{1}{3}=1 & u(1)=3
\end{array}
$$

With the boundary conditions:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u(1)=3
\end{array}\right.
$$

So, $u^{h}=\sum_{j=1}^{n} N_{j} a_{j}$

And we have chosen N_{j} :

$$
\begin{gathered}
N_{j}=3 \mathrm{x} \\
0<\mathrm{x}<\mathrm{I}, \text { with } \mathrm{I}=1
\end{gathered}
$$

in order to satisfy

$$
\begin{gathered}
w=W_{i}(\mathrm{x})=N_{i}(x)\left\{\begin{array}{l}
1 \text { when } i=n \\
0 \text { when } i \neq n
\end{array}\right. \\
f_{1}=\int_{0}^{1 / 3} 3 x \sin x d x \approx-0,9825
\end{gathered}
$$

(Integrating by parts)

$$
f_{2}=\int_{1 / 3}^{2 / 3} \sin x(3 x) d x \approx 0,5004
$$

$$
f_{3}=\int_{\frac{2}{3}}^{1} \sin x(3 x) d x \approx 2,9475
$$

$$
K_{12}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=3
$$

$$
K_{21}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=-3
$$

$$
K_{22}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=6
$$

$$
K_{33}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=9
$$

$$
\left.\begin{array}{c}
K_{31}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=-6 \\
K_{13}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=6 \\
K_{23}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=3 \\
K_{32}=\int_{0}^{1} \frac{d}{d x}(3 \mathrm{x}) \frac{d}{d x}(3 \mathrm{x}) d x=-3 \\
3\left(\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right. \\
\begin{array}{c}
1 \\
2
\end{array} \\
-1
\end{array}\right)\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right)=\left(\begin{array}{c}
-0,9825 \\
0,5004 \\
2,9475
\end{array}\right) .
$$

And we must solve this system of three equations with three unknowns:

$$
\begin{gathered}
a_{1} \approx 0.4085 \\
a_{2} \approx 0.087 \\
a_{3} \approx 0,739
\end{gathered}
$$

$\mathrm{U}(\mathrm{x})=a_{1} N_{1}(x)+a_{2} N_{2}(x)+a_{3} N_{3}(x)$
$U(x)=0.4085(3 x)+0.087(3 x)+0,739(3 x)$
$U(0)=0$
$U(1 / 3)=1,2345$
$U(2 / 3)=2,469$
$U(1)=3,7036$
These are the numeric solutions. And they should be close to those exact solutions written in page 5 .

