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1 Problem Statement:

The problem to solve is the deformation of a thin plate under self-weight and
an imposed external displacement at the top of it. The plate has a thickness
of one meter, so a plane stress model is chosen. Since the plate is symmetric
only the left part of the domain is studied with a discretization of four linear
triangles as seen in Figure 1.

Figure 1: Discretization used to study the thin plate deformation.

2 Strong Form:

The first thing that should be done to model any problem using the Finite
Elements Method (FEM) is to write down the equations that rule the system
in its Strong Form. In the case of plane stress the relation between strain and
stresses in linear elasticity is governed by (1).

σ = Dε (1)

with

D =





E
1−ν2 ν E

1−ν2 0

ν E
1−ν2

E
1−ν2 0

0 0 E
2(1+ν)





and

ε = ▽uS =
1

2
(▽u+ (▽u)T ) (2)

The strain tensor is the symmetrized gradient of deformation (2). If we
replace (2) in (1) and we impose equilibrium of linear momentum, the general
strong form of the problem is given by (3).

▽·(D ▽ uS) + ρb = D ▽
2 u+ ρb = 0 (3)
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To reproduce the full model with the reduced domain, some additional con-
sideration have to be done. The symmetry axis corresponding to the bars 35
and 56 is affected by the right and left sides which have opposed horizontal
displacement. Therefore this axis won’t deform in the x-direction and we need
to impose this in the boundary conditions. In addition the three lower nodes
are fixed to the ground so they cannot move neither horizontally nor vertically.
These conditions are expressed as:

u(x, 0) = 0 ; v(3, y) = 0

3 Connectivities and Nodal Coordinates:

In order to compute the FEM approximation of the problem, the geometrical
properties of the mesh have to be expressed in two arrays: the Nodal Coordinates
and Connectivity ones. The first one just contains by rows in the first columns
the x-coordinate of the i-th node and in the second one the y-coordinate. Follow-
ing the global numbering of Figure 1 the Nodal Coordinates matrix comes to be:

X =

















0 0
1.5 0
3 0
1.5 1.5
3 1.5
3 3

















The connectivity matrix contains by rows the relation between the global
and local numbering of the i-th element. Following the recommendation of the
problem statement, the local element numbering has been chosen to start from
the lower right corner of each element and following anticlockwise. This gives
the following connectivity matrix for elements from 1 to 4:

T =









2 4 1
5 4 2
3 5 2
5 6 4









4 Linear System of Equations:

From the strong form of the problem it is derived the weak form by introducing
virtual displacements and integrating by parts. From [1] we obtain which is the
expression of the elemental stiffness matrix of one bar of the linear triangular
element.
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Ke
ij =

t

4Ae

(

bibjd11 + cicjd33 bicjd12 + bjcjd33
cibjd21 + bicjd33 bibjd33 + cicjd22

)

where
bi = yj − yk ; ci = xk − xj

This matrix is computed for all the three bars of the element (12, 23 and 31
in local numbering). Then this can be either assembled into an element stiffness
matrix or directly to the global one. In the first case, each bar contribution is
placed into the ij-th place using local numbering. After this the local stiffness
matrices have to be assembled again into the global stiffness matrix. This pro-
cedure is not efficient because requires to store temporally matrices that will
finish assembled all together in the global matrix. Instead of doing this, it is
much more efficient to compute each of the contributions of the bars and as-
semble them directly into the global stiffness matrix. This is what is shown in
the global stiffness matrix K:

K =















K
1

33
K

1

31
K

1

32
0 0 0

K
1

13
(K1

11
+K

2

33
+K

3

33
) K

3

31
(K1

12
+K

2

32
) (K2

31
+K

3

32
) 0

0 K
3

13
K

3

11
0 K

3

12
0

K
1

23
(K1

21
+K

2

23
) 0 (K1

22
+K

2

22
+K

4

33
) (K2

21
+K

4

31
) K

4

32

0 (K2

13
+K

3

23
) K

3

21
(K2

12
+K

4

13
) (K2

11
+K

3

22
+K

4

11
) K

4

12

0 0 0 K
4

23
K

4

21
K

4

22















Once the global stiffness matrix is assembled, the same has to be done for
the force vector. In this particular case the external forces to consider are the
self weight of the plate and the applied initial displacement of the top node.
The contribution of body forces (−ρg) is given by the next expression (4).

fe
bi =

∫

Ω

NT
i btdA =

(At)e

3

(

bx
by

)

=
(At)e

3

(

0
−ρg

)

(4)

In (4) the nodal contribution of the self-weight is split in equal parts because
it produces the same momentum on the element. The imposed vertical displace-
ment in node 6 is introduced as the equivalent force required to produce the
displacement (5). In nodes 1, 2, and 3 there will be the vertical and horizontal
reactions from the unions, so they have to be introduced as unknowns that will
be determined after solving the system of equations.

fe
εi

=

∫

Ω

BT
i Dε0tdA =

te

2

(

bi(d11ε
0
x + d12ε

0
y) + cid33γ

0
xy

ci(d21ε
0
x + d22ε

0
y) + bid33γ

0
xy

)

(5)

where

ε0x =
∆x

lex
, ε0y =

∆y

ley
, γ0

xy =
1

2

(∆x

ley
+

∆y

lex

)

We note here that in our case the structure is modelled assuming plain
stress. This means that the structure can deform both in the x and y directions.
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Therefore there are two degrees of freedom per node, what in our discretization
of four elements and six nodes make a total of 12 unknowns. The way to
compute this using the FEM is to consider a vector of 12 unknowns (6 horizontal
displacements and 6 vertical ones) and solve the problem with the same stiffness
matrix for the x and y direction. This can be done either considering a block
matrix 12×12 or solving two systems of linear equations with same stiffness
matrix but different force and unknowns vector. For a question of space we
present the force vectors separately.

fx =

















f1
3 +Rx1

f1
1 + f2

3 + f3
2 +Rx2

f3
1 +Rx3

f1
2 + f2

2 + f4
3

f2
1 + f3

2 + f4
1 +Rx5

f4
2 + f4

ε0
+Rx6

















fy =

















f1
3 +Ry1

f1
1 + f2

3 + f3
2 +Ry2

f3
1 +Ry3

f1
2 + f2

2 + f4
3

f2
1 + f3

2 + f4
1

f4
2 + f4

ε0

















As it is known the stiffness matrix of a FEM approximation is singular
if the boundary conditions are not imposed. This is done by taking out the
rows and columns of the nodes where the displacements (Dirichlet boundary)
are already known. Then to consider the effect of that displacement on the
remaining nodes, the correspondent component is pre-multiplied by the known
displacement and moved to the right-hand side as a force. However in this case
since the prescribed displacements are zero, the contribution of each of theses
nodes to the force vector will be zero. Regarding the vertical components, the
remaining rows and columns are 4, 5, and 6. On the other hand the only node
that can deform freely in the horizontal direction is node 4. As the global system
is reduced to a 4×4, we present the global system (6).









(K2

11
+ K3

22
+ K4

11
) 0 0 0

0 K1

22
+ K2

22
+ K4

33
) (K2

21
+ K4

31
) K4

32

0 (K2

12
+ K4

13
) (K2

11
+ K3

22
+ K4

11
) K4

12

0 K4

23
K4

21
K4

22

















uh
x4

uh
y4

uh
y5

uh
y6









=









f1

2
+ f2

2
+ f4

3

f1

2
+ f2

2
+ f4

3

f2

1
+ f3

2
+ f4

1

f4

2
+ f4

ε0









(6)

5 Numerical approximation:

Once the nodal contributions and the system are well defined the only thing to
do is replace each expression with the corresponding value and carry out the
numerics. Substituting into the equations the given parameters (E=10 GPa,
ν = 0.2, δ =10−2 m, t=1 m and ρg= 103N/m2 ) this is the system to be solved:









−1.15 10
10

0 0 0

0 −1.15 10
10

3.13 10
09

−2.08 10
09

0 3.13 10
09

−1.77 10
10

1.04 10
09

0 −2.08 10
09

1.04 10
09

−5.21 10
09

















u
h
x4

u
h
y4

u
h
y5

u
h
y6









=









−1.1250 10
3

−1.1250 10
3

−1.1250 10
3

−5.2084 10
7









Once solved the system, the displacements of all the nodes results in the follow-
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ings:








uh
x4

uh
y4

uh
y5

uh
y6









=









−0.0002
−0.0019
−0.0063
−0.0164









References
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