MSc in Numerical Methods in Engineering Marti Burcet Rodriguez
The Finite Element Method

FINITE ELEMENTS

Homework 1

Consider the following differential equation
—u" = fin ]0,1]

with the boundary conditions w(0) =0 and u(1) = a.
The Finite Element discretization is a 2-noded linear mesh given by the nodes x; = ih for
i=0,1,...,nand h=1/n.

1. Find the weak form of the problem. Describe the FE approximation u”.
2. Describe the linear system of equations to be solved.

3. Compute the FE approximation u" for n = 3, f(z) = sinz and o = 3. Compare it with the
exact solution, u{z) = sinxz + (3 — sin 1)a.

1. Find the weak form of the problem. Describe the FE approximation .

d?u d?u N 0
[ —_ — =
dx? f dx? f

Introducing a weight function w which satisfies: w(0)= w(1)=0and integration in the domain
10,1[:

f v +f fdx =0
w — ax w X =
Q dx? Q

Then integrating by parts the first term of the equation:
du]1 fldwdud +f1 dx =0
Y dx o Jo dxdx * 0 wfdx =

As we have defined w to be w(0)=w(1)=0, the first term of the equation cancels out, yielding
the Weak Form of the partial differential equation:

1dwdud _fl 4
o dx dx *= wa *

2. Describe the linear system of equations to be solved.

To approximate the function u we will use the linear interpolation:

n
~ h = . .
u~u —ZNja]
j=1
duh < ,
ax LN
=1

Where N; is the jcomponent of the vector field of shape functions, and q; is the coefficient
that multiplies the shape function of the element j. Then substituting:
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1dwduhd _ifldwN, p _J‘l p
o dx dx x_jzlodx j = OWf x

Now we have to define the weight function w. Using Galerkin Method, we choose:

So the expression yields:

n 1 noo1
Z f Ni'Nj'aj dx = Zf Ni fdx
ji=1"0 i=1°0

What defines a linear system of equations where the unknowns are the coefficients a;that

satisfies the weak form of the PDE. In matrix form, for one single 2-noded element using local
indexing, the system takes the form:

N1’N1’ NllNzl] [al] _ Nl f]
N,'N," N,'N,'[lazl = [N, f

le
Kij = f Nl'IIVjI dx
0

le
fi = f Ni f dx
0
3. Compute the FE approximation u” for n=3, f(x) = sin(x) and @ = 3. Compare it
with the exact solution, u(x) = sinx + (3 — sin 1)x.
We choose the shape and weight function defined in local indexing for each element:

xX,¢ —x X —x,¢
N, = le PNy = le
1

N2,=l—e

N =

_ l_e;
where [€ is the length of the element

Then we have to compute the contribution of each element to the FEM:

1€ I

Kiy =Ky =Kg =K —fN'N’d— L= (L (O)—1—3
11 = Koz = K33 = K44 = . 1V ax = , (02 X = (1°)2 z) " 1e
e 1 —1¢ 0
Ki, =Ky = K3y =Ky3 = K43 = K3, = N,'N,' = = —
12 21 32 23 43 34 J;) 2 Ny dx , @02 dx ((13)2) ((le)2>
1
1/3 1/3,. e _ _ 1 _ o + 1/3
1o J N, f dx = f X, b X sin(x) dx = [( cos(x) x3 le:L(x) X cos(x))] _
0 0 0

= 0.018415909611543
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1/3 V3x —x,® (cos(x) x} + sin(x) — x cos(x)) 13
lezf szdxzf B sin(x) dx = e =
0 0 0
= —0.018415909611543
[(—cos(x) x2 — sin(x) + x cos() "
£i2= (Zeos(@) x3 % () ( ))] = 0.071431627493983
[ 1/3
[(cos(x) x2 + sin(x) — x cos(x)]**
f,7 = [Cos@I X ze( ) ( ))] = —0.071431627493983
| 1/3
—cos(x) x3 — sin(x) + x cos()]"
£ = [( () 23 le( ) ( ))] = 0.116583715562470
2/3
cos(x) x3 + sin(x) — x cos(x))]"
£° = [( () x5 le( ) ( ))] = —0.116583715562470
2/3
1 -1 0 019 0.0184+0 0.018415909611543
3 -1 (1+1) -1 0 ||a:2 _ 0.0714 — 0.0184 _ 0.053015717882440
0 -1 1+1 -1f|as —0.0714 4+ 0.1166 0.045152088068487
0 0 -1 1 11as —0.1166 + 3 2.883416284437530

As we have Dirichlet boundary conditions in x=0 and x=1, the value of the functions at these
points (a; = u(0) = 0), (ays = u(1) = a) are not unknowns. Therefore we must simplify
the linear system to solve in the following way:

[ 6 —3] [az] _ [0.0530 — (=3 0)] _ [0.053015717882440]
-3 6 llasl 7] 0.0451 — (—3a) | ~ 19.045152088068488

_ [1.016798169314819]
2.015924432668824

So, all the values of the function calculated with the FEM are:

0
1.016798169314819

YFEM =1 015924432668824
3
And the analytical solution at the same points is:
0

1.046704368526853
2.057389146531139
3

YANA =

As it is seen, the approximate solution is very close to the analytical one with a discretization
of only 4 nodes, and of course at the boundaries where the values are prescribed, the
solution coincides. To show better how good is the approximate solution to the analytical
one see Graph 1.
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Analytical vs. approximate solutions
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Graph 1: Comparison between the approximate solution and the analytical one.



