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FINITE ELEMENTS 
Homework 1 
 

 

1. Find the weak form of the problem. Describe the FE approximation uh. 

−
𝑑2𝑢

𝑑𝑥2
= 𝑓 →

𝑑2𝑢

𝑑𝑥2
+ 𝑓 = 0 

Introducing a weight function w which satisfies: w(0)= w(1)=0 and integration in the domain 
]0,1[: 

∫ 𝑤 
𝑑2𝑢

𝑑𝑥2
 𝑑𝑥

Ω

+ ∫ 𝑤 𝑓 𝑑𝑥
Ω

= 0 

Then integrating by parts the first term of the equation: 

[𝑤 
𝑑𝑢

𝑑𝑥
]

0

1

− ∫
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
 𝑑𝑥 + ∫ 𝑤 𝑓 𝑑𝑥

1

0

= 0
1

0

 

As we have defined w to be w(0)=w(1)=0, the first term of the equation cancels out, yielding 
the Weak Form of the partial differential equation: 

∫
𝑑𝑤

𝑑𝑥

𝑑𝑢

𝑑𝑥
 𝑑𝑥 = ∫ 𝑤 𝑓 𝑑𝑥

1

0

1

0

 

2. Describe the linear system of equations to be solved. 

To approximate the function u we will use the linear interpolation: 

𝑢~𝑢ℎ = ∑ 𝑁𝑗𝑎𝑗

𝑛

𝑗=1

 

𝑑𝑢ℎ

𝑑𝑥
= ∑ 𝑁𝑗

′𝑎𝑗

𝑛

𝑗=1

 

Where 𝑁𝑗  is the j component of the vector field of shape functions, and 𝑎𝑗 is the coefficient 

that multiplies the shape function of the element j. Then substituting: 
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∫
𝑑𝑤

𝑑𝑥

𝑑𝑢ℎ

𝑑𝑥
 𝑑𝑥 = ∑ ∫

𝑑𝑤

𝑑𝑥
𝑁𝑗

′𝑎𝑗 𝑑𝑥
1

0

𝑛

𝑗=1

= ∫ 𝑤 𝑓 𝑑𝑥
1

0

1

0

 

Now we have to define the weight function w. Using Galerkin Method, we choose: 

𝑤 = 𝑁𝑖  ;  
𝑑𝑤

𝑑𝑥
= 𝑁𝑖

′ 

So the expression yields: 

∑ ∫ 𝑁𝑖
′𝑁𝑗

′𝑎𝑗 𝑑𝑥
1

0

𝑛

𝑗,𝑖=1

= ∑ ∫ 𝑁𝑖  𝑓 𝑑𝑥
1

0

𝑛

𝑖=1

 

What defines a linear system of equations where the unknowns are the coefficients 𝑎𝑗that 

satisfies the weak form of the PDE. In matrix form, for one single 2-noded element using local 
indexing, the system takes the form: 

[
𝑁1

′𝑁1
′ 𝑁1

′𝑁2
′

𝑁2
′𝑁1

′ 𝑁2
′𝑁2

′] [
𝑎1

𝑎2
] = [

𝑁1 𝑓
𝑁2 𝑓

] 

𝐾𝑖𝑗 = ∫ 𝑁𝑖
′𝑁𝑗

′ 𝑑𝑥
𝑙𝑒

0

 

𝑓𝑖 = ∫ 𝑁𝑖  𝑓 𝑑𝑥
𝑙𝑒

0

 

3. Compute the FE approximation 𝒖𝒉 for n=3, 𝒇(𝒙) = 𝒔𝒊𝒏(𝒙) and 𝜶 = 3. Compare it 
with the exact solution, 𝒖(𝒙) = 𝐬𝐢𝐧 𝒙 + (3 − 𝐬𝐢𝐧 1)𝒙. 

We choose the shape and weight function defined in local indexing for each element: 

𝑁1 =
𝑥2

𝑒 − 𝑥

𝑙𝑒
;  𝑁2 =

𝑥 − 𝑥1
𝑒

𝑙𝑒
 

𝑁1
′ = −

1

𝑙𝑒
;  𝑁2

′ =
1

𝑙𝑒
 

where 𝑙𝑒 is the length of the element 

Then we have to compute the contribution of each element to the FEM:  

𝐾11 = 𝐾22 = 𝐾33 = 𝐾44 = ∫ 𝑁1
′𝑁1

′ 𝑑𝑥
𝑙𝑒

0

= ∫
1

(𝑙𝑒)2
 𝑑𝑥

𝑙𝑒

0

= (
𝑙𝑒

(𝑙𝑒)2) − (
0

(𝑙𝑒)2
) =

1

𝑙𝑒
= 3 

𝐾12 = 𝐾21 = 𝐾32 = 𝐾23 = 𝐾43 = 𝐾34 = ∫ 𝑁2
′𝑁1

′ 𝑑𝑥
𝑙𝑒

0

= ∫
−1

(𝑙𝑒)2
 𝑑𝑥

𝑙𝑒

0

= (
−𝑙𝑒

(𝑙𝑒)2) − (
0

(𝑙𝑒)2
)

= −
1

𝑙𝑒
= −3 

𝑓1
1 = ∫ 𝑁1 𝑓 𝑑𝑥

1/3

0

= ∫
𝑥2

𝑒 − 𝑥

𝑙𝑒
 𝑠𝑖𝑛(𝑥) 𝑑𝑥

1/3

0

= [
(−𝑐𝑜𝑠(𝑥) 𝑥2

1 − 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥))

𝑙𝑒
]

0

1/3

=

= 0.018415909611543 
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𝑓2
1 = ∫ 𝑁2 𝑓 𝑑𝑥

1/3

0

= ∫
𝑥 − 𝑥1

𝑒

𝑙𝑒
 𝑠𝑖𝑛(𝑥) 𝑑𝑥

1/3

0

= [
(𝑐𝑜𝑠(𝑥) 𝑥1

1 + 𝑠𝑖𝑛(𝑥) − 𝑥 𝑐𝑜𝑠(𝑥))

𝑙𝑒
]

0

1/3

=

= −0.018415909611543 

𝑓1
2 = [

(−𝑐𝑜𝑠(𝑥) 𝑥2
2 − 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥))

𝑙𝑒
]

1/3

2/3

=   0.071431627493983 

𝑓2
2 = [

(𝑐𝑜𝑠(𝑥) 𝑥1
2 + 𝑠𝑖𝑛(𝑥) − 𝑥 𝑐𝑜𝑠(𝑥))

𝑙𝑒
]

1/3

2/3

=   −0.071431627493983 

𝑓1
3 = [

(−𝑐𝑜𝑠(𝑥) 𝑥2
3 − 𝑠𝑖𝑛(𝑥) + 𝑥 𝑐𝑜𝑠(𝑥))

𝑙𝑒
]

2/3

1

= 0.116583715562470 

𝑓2
3 = [

(𝑐𝑜𝑠(𝑥) 𝑥1
3 + 𝑠𝑖𝑛(𝑥) − 𝑥 𝑐𝑜𝑠(𝑥))

𝑙𝑒
]

2/3

1

=   −0.116583715562470 

3 [

1 −1 0 0
−1 (1 + 1) −1 0
0 −1 (1 + 1) −1
0 0 −1 1

] [

𝑎1

𝑎2

𝑎3

𝑎4

] = [

0.0184 + 0
0.0714 − 0.0184

−0.0714 + 0.1166
−0.1166 + 3

] = [

0.018415909611543
0.053015717882440
0.045152088068487
2.883416284437530

] 

As we have Dirichlet boundary conditions in x=0 and x=1, the value of the functions at these 
points (𝑎1 = 𝑢(0) = 0), (𝑎4 = 𝑢(1) = 𝛼) are not unknowns. Therefore we must simplify 
the linear system to solve in the following way: 

[
6 −3

−3 6
] [

𝑎2

𝑎3
] = [

0.0530 − (−3 ∙ 0)
 0.0451 − (−3𝛼)

] = [
0.053015717882440
 9.045152088068488

] 

𝑎 = [
1.016798169314819
2.015924432668824

] 

So, all the values of the function calculated with the FEM are: 

𝑌𝐹𝐸𝑀 = [

0
1.016798169314819
 2.015924432668824

3

] 

And the analytical solution at the same points is: 

𝑌𝐴𝑁𝐴 = [

0
1.046704368526853
 2.057389146531139

3

] 

As it is seen, the approximate solution is very close to the analytical one with a discretization 
of only 4 nodes, and of course at the boundaries where the values are prescribed, the 
solution coincides. To show better how good is the approximate solution to the analytical 
one see Graph 1. 
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Graph 1: Comparison between the approximate solution and the analytical one. 

 


