Polytechnic University of Catalonia

Master on Numerical Methods in Engineering

Homework 1 - FEM

Bruno Aguirre Tessaro

November 10, 2015

Consider the following differential equation

$$
\left.-u^{\prime \prime}=f \quad \text { in } \quad\right] 0,1[
$$

with the boundary conditions $u(0)=0$ and $u(1)=\alpha$.
The Finite Element discretization is a 2 -noded linear mesh given by the nodes $x_{i}=i h$ for $i=0,1, \ldots, n$ and $h=1 / n$.

1 Find the weak form of the problem. Describe the FE approximation u^{h}.
The strong form of the problem can be described as:

$$
\left\{\begin{array}{l}
\left.\frac{d^{2} u}{d x^{2}}+Q \quad=0 \quad \text { in } \quad\right] 0,1[\\
u(0)=0 \\
u(1)=\alpha
\end{array}\right.
$$

In order to apply the FEM, we need to describe the equation in its weak form. To do so, first, we multiply both sides of the equation by a continuous smooth weight function $w(x)$ and integrate over the domain:

$$
\int_{0}^{1} \omega(x) \frac{d^{2} u(x)}{d x^{2}} d x+\int_{0}^{1} \omega(x) Q(x) d x=0
$$

Now the first term is integrated by parts in order to decrease its derivative order by 1. Doing this, the weak form of the problem can be represented by:

$$
\int_{0}^{1} \frac{d \omega(x)}{d x} \frac{d u(x)}{d x} d x=\int_{0}^{1} \omega(x) Q(x) d x+\left.\omega(x) \frac{d u(x)}{d x}\right|_{0} ^{1}
$$

We can approximate the solution of $u(x)$ as a linear combination $u^{h}(x)=\sum_{i=1}^{n} N_{i}(x) u_{i}$ and by use the Galerkin Method, the weight functions will have the form of $\omega(x)_{i}=$ $N(x)_{i}$. Rearranging all the terms and representing the term $\frac{d u}{d x}$ by a reaction flux q we have:

$$
\int_{0}^{1} \frac{d N_{i}}{d x} \sum_{j=1}^{n}\left(\frac{d N_{j}}{d x} u_{j}\right) d x=\int_{0}^{1} N_{i} Q(x) d x+\left.N_{i} q\right|_{0} ^{1}
$$

2 Describe the linear system of equations to be solved.
With the use of Einstein index notation, we can drop the summation and express the equation in the form of:

$$
\int_{0}^{1} \frac{d N_{i}}{d x} \frac{d N_{j}}{d x} u_{j} d x=\int_{0}^{1} N_{i} Q(x) d x+\left.N_{i} q\right|_{0} ^{1}
$$

The system of equations will have the form of $K_{i j} u_{j}=f_{i}$, with each of this terms represented by:

$$
\begin{aligned}
K_{i j} & =\int_{0}^{1} \frac{d N_{i}}{d x} \frac{d N_{j}}{d x} d x \\
f_{i} & =\int_{0}^{1} N_{i} Q(x) d x+\left.N_{i} q\right|_{0} ^{1} \\
u_{j} & =u_{j}
\end{aligned}
$$

The resulting linear system of equations to be solved can be represented in matrix form as:

$$
\left[\begin{array}{ccccc}
K_{11} & K_{12} & K_{13} & \ldots & K_{1 n} \\
K_{21} & K_{22} & K_{23} & \ldots & K_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
K_{n 1} & K_{n 2} & K_{n 3} & \ldots & K_{n n}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\ldots \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\ldots \\
f_{n}
\end{array}\right]
$$

3 Compute de FE approximation u^{h} for $n=3, f(x)=\sin (x)$ and $\alpha=3$. Compare it with the exact solution, $u(x)=\sin (x)+[3-\sin (1)] x$.

For a 3 finite element discretization, the approximated solution will have the form of:

$$
u^{h}=u_{1} N_{1}+u_{2} N_{2}+u_{3} N_{3}+u_{4} N_{4}
$$

The shape functions N_{i} and their derivatives are represented locally (for each element) by:

$$
\begin{array}{ll}
N_{1}^{e}=\frac{x_{2}-x}{1 / 3} & \frac{d N_{1}^{e}}{d x}=\frac{-1}{1 / 3} \\
N_{2}^{e}=\frac{x-x_{1}}{1 / 3} & \frac{d N_{2}^{e}}{d x}=\frac{1}{1 / 3}
\end{array}
$$

With the shape functions and its derivatives the stiffness matrix $K_{i j}$ can be assembled, locally, it has the form of:

$$
K^{e}=\frac{1}{1 / 3}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

To evaluate f_{i}, it is necessary to evaluate the shape functions N_{i} at each element:

$$
\begin{array}{lll}
N_{1}^{1}=3(1 / 3-x) & N_{2}^{1}=3(x-0) & N_{1}^{2}=3(2 / 3-x) \\
N_{2}^{2}=3(x-1 / 3) & N_{1}^{3}=3(1-x) & N_{2}^{3}=3(x-2 / 3)
\end{array}
$$

And f is evaluated as:

$$
\begin{array}{ll}
f_{1}^{1}=\int_{0}^{1 / 3}(1-3 x) \sin (x) d x+q_{1}=0.018416+q_{1} & f_{2}^{1}=\int_{0}^{1 / 3}(3 x) \sin (x) d x=0.036627 \\
f_{1}^{2}=\int_{1 / 3}^{2 / 3}(-3 x+2) \sin (x) d x=0.071432 & f_{2}^{2}=\int_{1 / 3}^{2 / 3}(3 x-1) \sin (x) d x=0.0887638 \\
f_{1}^{3}=\int_{2 / 3}^{1}(-3 x+3) \sin (x) d x=0.11658 & f_{2}^{3}=\int_{2 / 3}^{1}(3 x-2) \sin (x) d x+q_{4}=0.129+q_{4}
\end{array}
$$

With this, all the data to mount up the system of equations is evaluated, considering the Dirichlet boundary conditions $u_{1}=0$ and $u_{1}=3$, as:

$$
3\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
0 \\
u_{2} \\
u_{3} \\
3
\end{array}\right]=\left[\begin{array}{c}
0.018416+q_{1} \\
0.108059 \\
0.204218 \\
0.129+q_{4}
\end{array}\right]
$$

The values at the nodes u_{1} and u_{4} prescribed by the Dirichlet boundary conditions are knowns, leading to a reduction of the system of equations to the form:

$$
3\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{c}
0.108059 \\
0.204218+(3 * 3)
\end{array}\right]
$$

Solving the system we find $u_{2}=1.046704$ and $u_{3}=2.057388$. This will lead to a approximation of the form:

$$
u^{h}=1.046704 N_{2}+2.057388 N_{3}+3 N_{4}
$$

And the reaction fluxes can now be calculated as follows:

$$
\begin{aligned}
3(-1.046704) & =0.018416+q_{1} & & q_{1}=-3.158527 \\
3(-2.057388+3) & =0.129+q_{4} & & q_{4}=2.698835
\end{aligned}
$$

Now we can plot the analytical solution $u(x)=\sin (x)+[3-\sin (1)] x$ and the approximated solution $u^{h}=1.046704 N_{2}+2.057388 N_{3}+3 N_{4}$ to make a comparison of the results.

Figure 3.1: Comparison between analytical and FEM approximated solution

We can observe that the solutions have great agreement with each other showing that the FE approximation is satisfactory.

