Perfect Marenga Homework 3 Numerical Methods for PDE

Ivan Pérez ODEs 1st Semester 2019-2020
Contents
1 Introduction of Methods 1
1.1 Forward Euler Method e e e e 1
1.2 Heun Method e e e e e e e 1
1.3 Runge-Kutta 4th Order Method 2
2 Comparison of Methods 2
3 Convergence of Methods 3
4 ODEA45 function 3
5 Conclusions 4
A MATLAB Code 5

1 Introduction of Methods

Most engineering problems can be modelled by ordinary differential equations (ODEs), and there exist several
numerical techniques to approximate the solution of these ODEs. Some of these methods are going to be
discussed in this report namely, Forward Euler, Heun and Runge-Kutta 4th order and their implementation to
a 2nd order ODE.

1.1 Forward Euler Method

The basic idea of the Euler method is to approximate the derivative in the current position with an incremental
quotient, and below is the numerical scheme of the method after negelecting the truncation error;

Yipr =Y+ Azf(zi, Vi) (1)

1.2 Heun Method

The method is sometimes called the Runge-Kutta 2nd order method, and the idea behind it is to use the
trapezoidal rule to approximate the integral below;

Ti41
Vi =Yt [floyl@) do 2)
Zq
resulting in an implicit equation shown below;
Ax
Yipn =Y + T[f(xu Yi) + f(@iv1, Yig1)] (3)

After some manipulation the resulting explicit equation can be written as;

Vi1 =Y+ 82[f (25, Vi) + f(@ig1, Yiy)]

Perfect Marenga Homework 3 Numerical Methods for PDE
Ivan Pérez ODEs 1st Semester 2019-2020

1.3 Runge-Kutta 4th Order Method

Like the second order method the 4th order method is based on approximating the integral in equation 2 by
numerical quadrature only of higher degree in this case, and below is the numerical scheme of the method;

Yimi=Y+ %[/ﬁ + 2ko + 2k3 + k4]

klzf(xia }/1)

ky = flzi + 55, Y+ &% k1) (5)
ks = flzi+ 42, Y, + & ko)

ky = f(x; + Az, Y; + Ax k3)

2 Comparison of Methods

In order to assess which of the explained methods in section 1 is performing better, it is compared the error
along step size against the analytical solution. The below figure 2 compares for the same computational effort
the Euler’s method, the Heun’s method and Runge-Kutta’s 4th-Order method.

By ”same computational effort” it is understood as the same number of function evaluations in the whole
interval. Since each of methods implements different number of function evaluations per step, it is necessary to
establish different step sizes per each method to have a comparable computational effort.

For instance, Runge-Kutta’s method evaluates 4 times the function per each step discretization, while Euler’s
method only evaluates the function one time per each discretazed step. Likewise, Heun’s method evaluates the
function 2 times per each step.

09

08 / 0.86

0.7
0.84
0.6

05 0.8z

= =
0.4 0.8

0.3
0.78

0.2

Euler
— — —Heun
RK4
exact exact

0.1 076

0
0 01 0.z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.86 0.88 09 0.92 0.94 0.96 0.98 1

t t

All evaluated domain z € [0, 1] Detailed view

Figure 1: Plot of approximated y*(z) and analytical solution y(x)

On the plotting of figure 2, x has been discretazed differently for each methods to ensure same computational
effort, as follows:

e RK 4th-Order method z € [0, 1] — 8 discretizations.
e Heun method z € [0,1] — 16 discretizations.

e Euler method z € [0,1] — 32 discretizations.

Perfect Marenga Homework 3 Numerical Methods for PDE
Ivan Pérez ODEs 1st Semester 2019-2020

3 Convergence of Methods

The convergence of each method has been evaluated. For a given point (z = 1), the logarithmic error has been
measured for different Ax discretizations. From large Ax to small ones.

Note that since all the Az are less than 1, the log(Az) will be always a negative value. It is necessary to
represent the absolute |log(Ax)| as values for the horizontal axis.

v =-1.0x-1.0

Euler
5 4\&

G
“‘“*—q__‘_ﬂ_;:ﬁ_(_:w =-21x-21

-10 T

-13 Vria =-42%-42

log |Error|

-20

25 —¥— Euler
—=— Heun
—+—RK4

-30
2 25 3 3.5 4 4.5 5 55

llog Ax]|
Figure 2: Convergence of the error

All the methods tend to convergence as it is decreased the Axz. The bigger the slope the more faster the
method converges. Thus, the Runge-Kutta method converges faster than the other two methods with an slope
factor of -4 (4th order convergence). Euler method convergences with -1 factor, and Heun’s methods with a
factor of -2.

4 ODEA45 function

The ODEA45 function in Matlab implements the Runge-Kutta 4th and 5th order method with a variable time
step for efficient computation. This method produces results with global and local errors of order 4th and 5th
respectively, so the method is quite accurate. To improve the accuracy of the solution obtained by this function,
the default relative error tolerance in the option part has to be changed to the desired error tolerance which
corresponds with the desired accuracy. Below is the is a graph of the obtained results with ODE45 compared
with the exact solution;

09
08 -
07 -

06 -

05 -

047 A 1
~
/ exact
037 ar — + —oded5|
02r d

01F

0 01 0.z 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 3: Comparison of ODE45 with the exact solution

Perfect Marenga Homework 3 Numerical Methods for PDE
Ivan Pérez ODEs 1st Semester 2019-2020

To improve the accuracy of the solution, MATLAB has another parameter called ”options” in the ode/d
function, where we can modify the relative error tolerance which corresponds with the desired accuracy.
Here is the part that can be changed:

options = odeset(’RelTol’,1e-5,’Stats’,’on’,’OutputFcn’,Q@odeplot)

5 Conclusions

After assessing all approximation ODE’s methods, several conclusions arises. Regarding the error perfor-
mance of the methods for the same computational effort:

e Fuler method for the same computational effort in comparison to others methods, always performs worse.
Furthermore, the error gap is several orders of magnitude higher than the gap error between Heun’s and
Runge-Kutta 4th-order methods.

e Runge-Kutta 4th-order method is the one that performs better. Nevertheless, for the studied function, the
error is very close to the Heun’s method.

e The Heun’s method performs almost as well as Runge-kutta 4th-Order methods on the studied ODE.

Regarding the convergence, the Runge-Kutta method is the best, it converges 4 times faster than the Forward
Euler method and 2 times faster than the Heun method. At the same time, the Heun method converges 2 times
faster than the Forward Euler method.

© ® N o A W N e

Perfect Marenga Homework 3
Ivan Pérez ODEs

Numerical Methods for PDE

1st Semester 2019-2020

A MATLAB Code

Here it is presented the MATLAB codes:

Euler method:

Listing 1: Matlab script

%6
% IMPLEMENTATION OF THE EULER METHOD
VG

function y = EulerM(y_0, z_0)
global tEu

y = zeros (length (tEu) ,1);
z = zeros(length (tEu) ,1);

y(1) = y-0;
z(1) = z.0;

format long

for n = 1:length (tEu)—

(
dt tEu(n+1) — tEu(n),
z(n+1) = z(n) — dt*xy(n);
y(n+1) = y(n) + dt*z(n);
end
end

Heun method:

Listing 2: Matlab script

%

% IMPLEMENTATION OF THE HEUN METHOD
%

function y = Heun(y-0, z_-0)

f =aQ(y, z) z;

g =Q(y, z) —y;

global tHeu

y = zeros (length (tHeu) ,1);
z = zeros(length (tHeu) ,1);

y(1) = y-0;
z(l) = z.0;

for n = 1:length (tHeu) — 1

dt = tHeu(n+1) — tHeu(n);

z_star = z(n) + dtxg(y(n), z(n));

y_star = y(n) + dt+f(y(n), 2(n));

z(n+l) = z(n) + dt/2+(g(y(n), z(n)) + g
y(n+1) = y(n) + dt/2«(f(y(n),z(n)) + f(y-star,

(y_star, z_star)
z_star));

);

23

24

Homework 3
ODEs

Perfect Marenga
Ivan Pérez

Numerical Methods for PDE
1st Semester 2019-2020

end
end

Runge-Kutta 4th-Order method:

Listing 3: Matlab script

%

% IMPLEMENTATION OF THE 4TH ORDER RUNGE KUTTA METHOD

07
(Y

function y = RK4(y-0, z.0)
global tRK4

f =Q(y, z) z;
g =Q(y, z) —y;

y = zeros (length (tRK4) ,1);
z = zeros(length (tRK4) ,1);

y(1) = y-0;
z(1) = z.0;

for n = 1:length (tRK4)—
dt = tRK4(n+1) — tRK4(n);
kl = f(y(n), z(n));

11 = g(y(n), z(n));
k2 = f(y(n) + dt/2xkl, z(n) 4+ dt/2%11);
12 = g(y(n) + dt/2%kl, z(n) + dt/2x11);
k3 = f(y(n) + dt/2xk2, z(n) + dt/2%12);
13 = g(y(n) + dt/2xk2, z(n) + dt/2%12);
k4 = f(y(n) + dt*k3, z(n) + dt*13);
14 = g(y(n) + dt*k3, z(n) + dtx13);
y(n+1) = y(n) + dt/6x(kl + 2xk2 + 2xk3 + k4);
z(n+1) = z(n) + dt/6x(11 + 2x12 + 2x13 + 14);
end
end
Y%
% FUNCTION DEFINITION USED IN ODE45
%o

function yprime = ODE2(", y)

yprime = [y(2); —y(1)];
end

© o N o o A W N e

Perfect Marenga Homework 3 Numerical Methods for PDE
Ivan Pérez ODEs 1st Semester 2019-2020

Main Matlab execution code:

Listing 4: Matlab script

Y%
% DEFINING THE INITIAL CONDITIONS
%
clear

cle

y-0 = 0;

z_.0 = 1;

global tRK4 tEu tHeu
tRK4 = linspace (0,1,8);
tHeu = linspace (0,1,16);
tEu = linspace (0,1,32);

%
% CALLING THE FUNCTIONS TO SOLVE THE PROBLEM USING GIVEN INITIAL CONDITIONS
Y%
Y _Euler = EulerM(y_-0, z.0);

Y _Heun = Heun(y-0, z-0);

YRK4 = RK4(y.0, 2.0);

[x, y] = ode45(@QODE2, tRK4, [0;1]);

r = [Y_Euler(end) Y_Heun(end) Y RK4(end) |;

%o

% PLOTTING THE RESULTS
%

plot (tEu,Y_Euler, 'b—")
hold on

plot (tHeu,Y _Heun, 'r— ")
plot (tRK4, Y RK4, 'k—")
plot (tRK4, sin (tRK4),’go’)
%oplot (tRK4, y(:,1) ,’k+")

% legend (’Euler >, "Heun’ , ’"RK4’ , exact ’, "oded5’, ’location ', best ’)
legend (’Euler’, "Heun’, 'RK4’ , exact ', ’location’,’best’)

xlabel ('x")

ylabel ('y ")

hold off

