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Problem 1

A Bisection-Secant method has been implemented that swaps from one method to the other in
both directions with the following swap criteria:

• Given the initial range where the solution is continuous and a unique solution is guaranteed,
one Bisection loop is performed yielding a nested range and two abscissa points to run a
Secant loop. The method is unconditionally swapped to run a Secant loop. This guarantees
for smooth functions that the method quickly starts a quadratic convergence.

• Using the two abscissa points provided by the last Bisection loop, a succession of Secant
loops is performed yielding a succession of new approximations to the solution. In case
the value of the newest approximation lays out of the original range provided by the im-
mediately precedent Bisection loop, then a further Bisection loop is forced starting from
the range yielded by the last Bisection loop. Otherwise the succession of Secant loops
continues until a precision criterion is reached. This prevents the method from looking for
the solution out of the range delimited by the last Bisection loop.

A further swap to a Bisection loop could be implemented to enhance the performance of this
solver. In the latter succession of Secant loops the error, estimated as the distance between the
two last solutions is normally decreasing. In case the newest solution lays in the range delimited
by the last Bisection loop but the error does not reach the threshold nor observes a quadratic
decrease, a new Bisection loop could be forced. This new Bisection loop could start from the
last range defined or it could take advantage of the successive approximations yielded by the
Secant loop. This part of the algorithm further guarantees that the process is not stuck locally
for tricky functions.

This team originally implemented a Newton method with a numerical evaluation of the local
derivative. For continuous function with monotonic derivative this method has quadratic conver-
gence. However, if its derivative has an extreme near the zero of the function, the convergence
is not guaranteed. The present Bisection-Secant method overcomes this type of difficulties with
the swap criteria explained above. That guarantees sufficient number of nested Bisection loops
to bound the solution in a smooth enough range.

However, both methods require the solution to be unique in the local range and are not
robust if multiple solutions are present. Two different convergence plots are shown in Figure 2
and Figure 3 with two different initial ranges.

(a) (b)

Figure 1: (a) Convergence scheme of the Bisection-Secant method applied to the pool problem
starting from a range [0, π/2]. (b) Zoom in the third Secant loop
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(a) (b)

Figure 2: (a)Convergence scheme of the Bisection-Secant method applied to the double asymp-
totic function starting from a range [3.1, 3.3]. (b) Zoom in the third Secant loop.

.

(a) (b)

Figure 3: (a) Convergence scheme of the Bisection-Secant method applied to the double asymp-
totic function starting from a range [3.01, 5.0]. (b) Zoom in the second Secant loop.

.

Other intentionally tricky functions have been explored to show the need of some further
means to bypass slow convergence issues. For instance, the family of functions

y = x+ (0.1 + ε) · sin(10x)− 7

2
π + ε

has been explored for several different values of ε . The lower ε, the more complex and slow is
the convergence. This function features many inflection points near the zero and this leads the
solver to fail near the solution. The proposed swap to Bisection loop would probably solve the
slow convergence of this specific function.

(a) (b)

Figure 4: (a) Convergence scheme of the Bisection-Secant method applied to y with ε = 0.01
starting from a range [0, 5π]. (b) Zoom in the slow convergence region of Secant loops
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Problem 2

Integral 1 (Integral_1.m)

Upon first glance to the plot of the function, it looks like a polynomial of order 4 or higher, (see
Figure 5 ). Two approaches were tested for the solution, as it is provided in the script.

First, a Newton-Cotes 1 quadrature is chosen. Composite Simpson’s rule can be used to
approximate the integral, but the required number of intervals needs to be incremented to get
a valuable result. Same happens when using second Simpson’s rule but, when a Newton-Cotes
quadrature with n = 4 is chosen, the error becomes really small (E = 2.2065e−15). In addition,
a Gauss quadrature 2 is also used. Effectively, when 3 points are used to evaluate the function,
the error lays at machine error level. As long as the smallest amount of points is to be used, the
Gauss quadrature is the preferred method.
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(b) Convergence

Figure 5: Plots for function g1(x)

Integral 2 (Integral_2.m)

Function g2(x) is symmetric. Thus, computing just half of the integral is a reasonable approach
to save computational cost. Composite Simpson’s rule as well as a Newton-Cotes quadrature
of order 4 need an increment of the number of intervals in order to get reasonable results.
For instance, composite Simpson’s rule with 10 intervals gives an error of E = 0.0127 and
with a discretization of m = 50 gives E = 1.4525e − 05. This is not surprising due to the
kind of sinusoidal behavior that this function shows. On the other hand, as we can see in the
convergence plot, Gauss quadratures give a better result with less number of points. In the
Lab class, composite trapezoidal rule was used to approximate the value of this integral but as
it is shown in Figure 6(b), a large number of points need to be considered. As a result, the
computational cost is by far the highest.

Integral 3 (Integral_3.m)

For this integral, we used composite Simpson’s rule as a first approach. Again, we need to
increase the number of intervals for the integration to obtain a good result. A Gauss-Legendre
quadrature was also tested, giving a better result with less points, as expected. Looking at the
plot of function g3(x) we notice a change in the derivative of the function. Thus, same as for
function g2(x) a better approach should be to divide the function into intervals where the slope
of the derivative is similar what allows to get a better approximation (Figure 7). In the script
this method is implemented where we used different Gauss quadratures for the intervals.

1A Matlab function named NewtonCotes is provided. Depending on the chosen n, the function computes the
integral using the trapezoidal rule, Simpson’s rule, etc.

2A function named GaussLegendre is provided. It gives the points where the functions need to be evaluated
as well as the weights for any interval.
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(a) Function g2(x) is symmetric
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(b) Convergence

Figure 6: Plots for function g2(x)
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(a) Function g3(x)
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Figure 7: Plots for function g3(x)

Integral 4 (Integral_4.m)

This function has discontinuities at abscissa x = −2, x = 1.7 and x = 3.5 which should be treated
carefully in the integration (see Figure 8(a)). Therefore, 4 different subdomains are considered.
In fact, between x = −2 and x = 1.7 we used the same approach as for previous integral, thus
we actually had 5 subdomains. For the first interval, Simpson’s rule was used (it looks like a 2nd
order polynomial). For the last one, trapezoidal rule was used due to the shape of the function.
In the middle intervals, Gass quadratures are considered as they use less points (see script).

Integral 5 (Integral_5.m)

The last function is defined as a set of points for stress and strain. After plotting (Figure 8 (b)),
a linear trend in the data is observed. Thus, we obtained a linear fit using least squares and
integrate the function. A Gauss quadrature with one point (n = 0) can be used to compute the
value of the integral of the linear fit giving in this case I = 0.741293. Moreover, the trapezoidal
rule can be used after joining the data points with lines and taking the distance between the
points as the interval. This is the approach implemented in the Lab class but results in higher
computational cost.
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(a) Function g4(x) plot
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y = 1.8*x - 0.082

(b) Linear fit

Figure 8: Functions g4(x) (a) and stress-strain plot with the linear fit
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